
DevSecOps

Module 1: DevSecOps Drivers
and Challenges

compliance->iso 27001,27017(service provider,cloud),27018(additionally)

Cloud security alliance(CSA),Cloud Controls Matrix (CCM)

Consensus Assessments Initiative Questionnaire(CAIQ),Google Vendor Security Assessment
Questionnaires (VSAQ)

Federal Information Processing Standards (FIPS)->crypto->OWASP Cryptographic Storage
Cheat Sheet. OWASP Guide to Cryptography OWASP Key Management Cheat Sheet

asymmetric->AES(>128 bit)

symmetric->RSA(>1024 bit)

hash->SHA256

Digital signature->RSA (>=2048 bits) DSA (>=2048 bits) ECDSA (>=256 bits)

Hellman key exchange (DH)->DH (>=2048 bits) ECDH(>-256 bits)

GDRP:

Design stage->Design Privacy Impact Assessment (PIA)

Coding stage->Data masking library, Anonymous toolbox, RAPPOR—privacy-preserving
reporting algorithms, Encryption storage (RSA, ASE), Secure erasure, Secure communication
protocol (such as TLS v1.2, SSH v2, SFTP, SNMP v3), Cookie consent, Data Vault, Key
management

Testing->OWASP testing for weak cryptography, testing for error handling, testing for
configuration, and so on

Deployment->OWASP configuration and deployment management testing, CIS secure
environment configuration, Sensitive information in Git

Monitoring->ELK for log analysis, Integrity monitoring (IDS/IPS) to monitor any unauthorized

changes, CIS secure configuration monitoring, Sensitive information leakage in Git

Virtualization

1. Limit informative messages from the VM to the VMX file
2. Limit sharing console connections
3. Disconnect unauthorized devices (USB, DVD, serial devices, and so on)

4. Disable BIOS Boot Specification (BBS)
5. Disable guest-host interaction protocol handler
6. Disable host guest filesystem server
7. Disable VM console paste operations
8. Disable virtual disk shrinking
9. Do not send host information to guests

Docker

1. Separate partition for containers
2. Updated Linux kernel
3. Only allow trusted users to control the Docker daemon
4. Audit the Docker daemon, files, and directories
5. Restrict network traffic between containers
6. TLS authentication for the Docker daemon
7. Do not bind Docker to another IP/port or a Unix socket
8. Docker daemon configuration files permissions
9. Container runtime (Linux Kernel capabilities, SSH, ports, memory, CPU, IPC)

Infrastructure as Code

Puppet, Chef, Ansible, and SaltStack

This will help both operation or development teams to build security configuration baselines
such as file permissions, firewall rules, web configurations, or MySQL connections. Once the
security configuration baseline is defined, the operation team can monitor any unauthorized
changes or roll back the configuration to previous specific versions

Cloud services hacks/abuse

 Data breaches
 Weak identity, credentials, and access management
 Insecure APIs
 System and application vulnerabilities
 Account hijacking
 Malicious insiders
 Advanced Persistent Threats (APTs)
 Data loss
 Insufficient due diligence
 Abuse and nefarious use of cloud services
 Denial of service
 Shared technology issues

Rapid release

1-Continuous integration

Jenkins, Git, Unit testing

2-Continuous delivery

IaC(Puppet), Docker

3-Continuous deployment

IaC (puppet), Docker Automated acceptance testing, Configuration

Module 2: Security Goals and
Metrics

 Organization goal
 Development goal/metrics
 QA goals/metrics
 Operation goal/metrics

Application Security Verification Standard(ASVS):

Authentication, Session Management, Access Control, Malicious Input handling, Output
encoding/escaping, Cryptography, Error handling and logging , Data Protection, Communication
Security, Http Security configuration, Security configuration, Malicious, Internal Security,
Business logic, Files and resources, Mobile, Web services

Design review

 Security compliance checklist
 Security requirement checklist (OWASP ASVS)
 Top 10 security design issues
 Security issues in the previous release
 Customer or marketing feedback on security issues

Implementation review

 Secure coding
 Selection of reliable and secure third-party components
 Secure configuration

Third-party components

1. A third-party software evaluation checklist:
2. Recommended third-party software and usage by projects:
3. CVE status of third-party components:

Code Review

Static Application Security Testing (SAST)->FindSecbugs, Fortify, Coverity, klocwork.

Dynamic Application Security Testing (DAST)->OWASP ZAP, BurpSuite

Interactive Application Security Testing (IAST)->CheckMarks Varacode

Run-time Application Security Protection(RASP)->OpenRASP

https://www.owasp.org/index.php/Category:OWASP _Code_Review_Project SEI CERT Coding
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

Software Assurance Marketplace (SWAMP): https://www.mir-swamp.org/

Environment Hardening

 Secure configuration baseline

 Constant monitoring mechanism

Constant monitoring mechanism

1-Common vulnerabilities and exposures (CVEs)

OpenVAS, NMAP

2-Integrity monitoring

OSSEC

3-Secure configuration compliance

OpenSCAP

4-Sensitive information exposure

No specific open source tool in this area. However, we may define specific regular expression
patterns

Module 3: Security Assurance
Program and Organization

SDL (Security Development Lifecycle)

Training:

Core security training

Requirements:

1. Establish security requirements

2. Create quality gates/bug bars

3. Perform security and privacy risk assessments

Design:

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards

1. Establish design requirements
2. Perform attack surface analysis reduction
3. Use threat modeling

Implementation:

1. Use approved tools

2. Deprecate unsafe functions
3. Perform static analysis

Verification:

1. Perform dynamic analysis
2. Perform fuzz testing
3. Conduct attack surface review

Release:

1. Create an incident response plan
2. Conduct final security review
3. Certify, release, and archive

Response:

1. Execute incident response plan

OWASP SAMM

OWASP SAMM categorizes security practices into four key business

Governance:

1. Strategy and metrics
2. Policy and compliance
3. Education and guidance

Construction:

1. Threat assessment
2. Security requirements
3. Secure architecture

Verification:

1. Design review
2. Implementation review
3. Security testing

Operations:

1. Issue management

2. Environment Hardening
3. Operational enablement

Security guidelines and processes

1- Security training:

Security awareness, Security certification program, Case study knowledge base, Top common
issue, Penetration learning environment

OWASP top 10, CWE top 25, OWASP VWAD

2- Security maturity assessment

Microsoft SDL, OWASP SAMM self-assessment for maturity level

Microsoft SDL, OWASP SAMM

3- Secure design

Threat modeling templates (risks/mitigation knowledge base), Security requirements for release
gate, Security design case study, Privacy protection

OWASP ASVS, NIST, Privacy risk assessment

4- Secure coding

Coding guidelines (C++, Java, Python, PHP, Shell, Mobile), Secure coding scanning tools,
Common secure coding case study

CWE, Secure coding, CERT OWASP

5- Security testing

Secure compiling options such as Stack Canary, NX, Fortify Source, PIE, and RELRO, Security
testing plans, Security testing cases, Known CVE testing, Known secure coding issues, API-
level security testing tools, Automation testing tools, Fuzz testing, Mobile testing, Exploitation
and penetration, Security compliance

Kali Linux tools, CIS

6- Secure deployment

Configuration checklist, Hardening guide, Communication ports/protocols, Code signing

CIS Benchmarks, CVE

7- Incident and vulnerability handling

Root cause analysis templates, Incident handling process and organization

NIST SP800-61

8- Security training

Security awareness by email, Case study newsletter, Toolkit usage hands-on training, Security
certificate and exam

NIST 800- 50, NIST 800- 16, SAFECode security engineering training

Stage 1 – basic security control

 Leverage third-party cloud service provider security mechanisms (for example, AWS
provides IAM, KMS, security groups, WAF, Inspector, CloudWatch, and Config)

 Secure configuration replies on external tools such as AWS Config and Inspector
 Service or operation monitoring may apply to AWS Config, Inspector, CloudWatch,

WAF, and AWS shield

Stage 1 – building a security testing team

Vulnerability assessment:

NMAP, OpenVAS

Static security analysis:

FindBugs for Java, Brakeman for Ruby on Rails, Infer for Java, C++, Objective C and C

Web security:

OWASP dependency check, OWASP ZAP, Archni-Scanner, Burp Suite, SQLMap, w3af

Communication:

Nmap, NCAT, Wireshark, SSLScan, sslyze

Infrastructure security:

OpenSCAP, InSpec

VM Toolset:

Pentest Box for Windows, Kali Linux, Mobile Security Testing Framework

Security monitoring:

ELK, MISP—Open source Threat Intelligence Platform, OSSCE—Open source HIDS Security,
Facebook/osquery—performant endpoint visibility, AlienValut OSSIM—opensource SIEM

Stage 3 – SDL activities

 Security shifts to the left and involves every stakeholder
 Architect and design review is required to do threat modeling
 Developers get secure design and secure coding training
 Operation and development teams are as a closed-loop collaboration
 Adoption of industry best practices such as OWASP SAMM and Microsoft SDL for

security maturity assessment

Stage 4 – self-build security services

Take Salesforce as an example—the Salesforce Developer Center portal provides security
training modules, coding, implementation guidelines, tools such as assessment tools, code
scanning, testing or CAPTCHA modules, and also a developer forum. Whether you are building

an application on top of salesforce or not, the Salesforce Developer Center is still a good
reference not only for security knowledge but also for some open source tools you may consider
applying.

Stage 5 – big data security analysis and automation

Key characteristics at this stage are:

 Fully or mostly automated security testing through the whole development cycle

 Applying big data analysis and machine learning to identify abnormal behavior or
unknown threats

 Proactive security action is taken automatically for security events, for example, the
deployment of WAF rules or the deployment of a virtual patch

Typical open source technical components in big data analysis frameworks include the
following:

 Flume, Log Logstash, and Rsyslog for log collection
 Kafka, Storm, or Spark for log analysis
 Redis, MySQL, HBase, and HDFS for data storage
 Kibana, ElasticSearch, and Graylog for data indexing, searching, and presentation

The key stages in big data security analysis are explained in the table:

Data collection:

Collects logs from various kinds of sources and systems such as firewalls, web services, Linux,
networking gateways, endpoints, and so on.

Data normalization:

Sanitizes or transforms data formats into JSON, especially, for critical information such as IP,
hostname, email, port, and MAC.

Data enrich/label:

In terms of IP address data, it will further be associated with GeoIP and WhoIS information.
Furthermore, it may also be labeled if it's a known black IP address.

Correlation:

The correlation analyzes the relationship between some key characteristics such as IP,
hostname, DNS domain, file hash, email address, and threat knowledge bases.

Storage:

There are different kinds of data that will be stored —the raw data from the source, the data with
enriched information, the results of correlation, GeoIP mapping, and the threat knowledge
base.

Alerts:

Trigger alerts if threats were identified or based on specified alerting rules.

Presentation/query:

Security dashboards for motoring and queries. ElasticSearch, RESTful API, or third-party SIEM.

Role of a security team in an organization

1- Security office under a CTO

 No dedicated Chief Security Officer (CSO)
 The security team may not be big—for example, under 10 members
 The security engineering team serves all projects based on their needs
 The key responsibility of the security engineering team is to provide security guidelines,

policies, checklists, templates, or training for all project teams
 It's possible the security engineering team members may be allocated to a different

project to be subject matter experts based on the project's needs
 Security engineering provides the guidelines, toolkits, and training, but it's the project

team that takes on the main responsibility for daily security activity execution

2-Dedicated security team

 Security management: The team defines the security guidelines, process, policies,

templates, checklist, and requirements. The role of the security management team is the
same as the one previously discussed in the Security office under a CTO section.

 Security testing: The team is performing in-house security testing before application
release.

 Security engineering: The team provides a common security framework, architecture,

SDK, and API for a development team to use
 Security monitoring: This is the security operation team, who monitor the security

status for all online services.
 Security services: This is the team that develops security services such as WAF and

intrusion deference services.

Security technical committee (taskforce)

The secure design taskforce will have a weekly meeting with all security representatives—from
all project teams— and security experts from the security team to discuss the following topics
(not an exhaustive list):

 Common secure design issues and mitigation (initiated by security team)
 Secure design patterns for a project to follow (initiated by security team)
 Secure design framework suggestions for projects (initiated by security team)
 Specific secure design issues raised by one project and looking for advice on other

projects (initiated by project team)
 Secure design review assessment for one project (initiated by project team)

Module 4: Security
Requirements and Compliance

Release gate examples

1-Design

 Threat modeling activities were performed for highrisk modules.
 The uses of third-party component versions was reviewed without major vulnerability.
 The top common secure design issues were reviewed without major issues.

2-Coding

 The static code analysis tool was used to identify major security risks.
 High severity issues in the code scanning results were all checked.
 No sensitive information was found in the source code (such as password, IP, email,

encryption key).

3-Build

Toolchain (compiler and linker) hardening configurations such as Position Independent
Executables (PIE), or Address Space Layout Randomization (ASLR), or Data Execution
Prevention (DEP) were correctly configured.

4-Testing

 No high-severity security issue. The severity is measured by the Common Vulnerability
Scoring System (CVSS) version 3.0

 OWASP testing cases were followed and executed.

 All protocols were tested with a fuzzer.

5-Production delivery

 The secure configuration definition was delivered.
 The communication ports, interface, and protocols were documented.

6-Monitoring

 The readiness of services and the configuration list for security scanning
 The readiness of service logs for security analysis.

Common Vulnerability Scoring System (CVSS)

Therefore, to get a more objective standpoint on the severity and impact of a security issue, it's
suggested to apply CVSS 3.0. CVSS 3.0, https://www.first.or g/cvss/calculator/3.0, evaluates a
security issue by answering the following eight questions:

 Attack Vector (AV): Does the attack require physical access, or can it be done through a
network?

 Attack Complexity (AC): Can the attack be done at any time, or at only under specific
conditions?

 Privileges Required (PP): Does the attack require administrator privileges?
 User Interaction (UI): Does the attack require user interaction (such as a click) to be

successful?
 Scope (S): Does the attack only impact the vulnerable component, or all other

components and the whole system?
 Confidentiality (C): Will any confidential information be stolen?
 Integrity (I): Will there be any integrity impact, such as tampering or changes to system

information?
 Availability (A): Will there be any availability impact, such as a performance impact or

services unavailable?

Security requirements for web applications

https://www.owasp.org/index.php/Category:OWASP_Application_Security
_Verification_Standard_Project.

 ASVS V1 Architecture
 ASVS V2 Authentication
 ASVS V3 Session Management
 ASVS V4 Access Control
 ASVS V5 Input Validation and Output Encoding
 ASVS V7 Cryptography
 ASVS V8 Error Handling
 ASVS V9 Data Protection
 ASVS V10 Communications
 ASVS V13 Malicious Code
 ASVS V15 Business Logic Flaws
 ASVS V16 Files and Resources
 ASVS V17 Mobile

 ASVS V18 API
 ASVS V19 Configuration
 ASVS V20 Internet of Things

The OWASP ASVS defines three levels of security requirements. Take V7: Cryptography at rest
as examples; in level-1 applications, it may only require that cryptographic modules fail
securely. For level 2/3 applications, whose security requirements surpass level 1, additionally
requires the use of an approved random number generator in the application

Security knowledge portal

The project team can also share their best practices or tools on the portal, to increase
experience sharing across business units. An ideal security knowledge portal may cover the
following areas, as shown in the following figure:

https://github.com/blabla1337/skf-flask

https://github.com/blabla1337/skf-flask

Big data security requirements

1-Infrastructure Security

 Database and service availability
 Protection against DDOS and a huge volume of data
 Secure data transmission, such as TLS 1.2

2-Data Privacy

 Data classification and protection
 Unauthorized access auditing and logging
 Data masking for sensitive or personal information
 Compliance with privacy laws or regulations

3-Data Management

 Secure database storage, such as secure configurations, encryption, and hardening
 Data governance during data life cycle processes
 Tell the users how the data is collected and used
 Explicit user consent for any collection of personal data
 Allow a user to edit, update, or delete the collected data

4-Integrity and Reactive Security

 Security analysis of logs to identify abnormal data access
 Prevent data from being tampered with
 Inform users when a security incident occurs

Big data technical security frameworks

1-Centralized security administration and management, Authorization and permissions control,
Centralized audits and reports

 Apache Ranger

 Apache Sentry

2-Operation monitoring and audits

 Apache Ambari

3-Enforcement of REST API security, Perimeter security

 Apache Knox

4-Secure transmission

 TLS v1.2 instead of HTTP
 SSH v2 instead of Telnet
 SFTP instead of FTP

5-Authentication

 Kerberos

6-Secure configuration and deployment

 Kerberos, and Knox secure configuration such as file permissions, daemon users, NTP,
certificates, and TLS

7-Data governance, Data life-cycle management, Data classification such as PII, classified,
authorization/datamasking based on classifications

 Apache Atlas

The following are some further recommended references for big data privacy and security:

 SP.1500-4 big data interoperability framework: Volume 4, Security and Privacy
 ENISA: Privacy by design in big data
 CSA Expanded top ten big data security and privacy challenges
 Information Commissioner's office Guide to data protection
 ENISA: Big data security

Privacy data attributes

1-Privacy data type

Describe collected or processed privacy data, such as name, address, phone

2-Purpose of collection

Describe the objective of the data collection and the business

3-Is it a must?

Is the data collection essential to keep the business application running?

4-Ways of collection

How the personal data is collected, such as API, email, or web form registration

5-Lawful basis

Is the data collection based on user agreement, contract, or legal compliance?

6-Rights of data subject

Can the data subject edit or delete the data?

7-Transmission

How the data is transmitted, such as FTP, email, or API

8-Storage country

Which country is the data stored in?

9-Storage format

In what format is the data stored, such as big data, relational database, or paper-based?

10-Expiration period

Any specified expiration period of the data usage?

11-Cross-border transfer

Will the data be transferred out of or into the EU?

12-Third-party involvement

Is any third party involved with the data processing?

13-Owner

Who/which team is the owner of the data?

Module 5: Security Architecture
and Design Principles

Security architecture design principles

Security by design Privacy by design

Primary
concerns

Unauthorized access to the
system.

Authorized process of privacy data.

According to OWASP, security
by design principles are the
following:

 Minimize attack surface
area

 Establish secure defaults
 Principle of least privilege
 Principle of defense in

depth
 Fail securely
 Don't trust services
 Separation of duties

Referring to OECD Privacy Principles,
the term privacy by design is defined by
eight principles:

 Collection Limitation Principle
 Data Quality Principle
 Purpose Specification Principle
 Use Limitation Principle
 Security Safeguards Principle
 Openness Principle
 Individual Participation Principle
 Accountability Principle

 Avoid security by
obscurity

 Keep security simple
 Fix security issues

correctly

Examples of
controls

 Access control
 Unsuccessful login

attempts
 Session control
 Timestamps
 Non-repudiation
 Configuration change

control
 Audit security events
 Cryptographic module
 Incident monitoring
 Error handling

 Cookie
 Anonymity
 Consent
 Obfuscation
 Restrict
 Notify and inform
 Authentication
 Minimization
 Separation
 Encryption
 Data masking

The following industry references may help you to build a secure architecture:

 Open Security Architecture (OSA) Patterns: http://www.opensecurityarch itecture.org/
 CSA CAIQ (Consensus Assessment Initiative Questionnaire): https:/

/cloudsecurityalliance.org/group/consensus-assessments
 Google VSAQ (Vendor Security Assessment Questionnaires): https://

github.com/google/vsaq
 PCI Self-Assessment Questionnaire (SAQ): https://www.pcisecuritystanda

rds.org/pci_security/completing_self_assessment
 NIST 1500-4 v4 Big Data Interoperability Framework Security and Privacy:

https://www.nist.gov/publications/nist-big-data-interoperability-fram ework-volume-4-
security-and-privacy

 NIST 800-122 Guide to Protecting the Confidentiality of Personally Identifiable
Information (PII): https://csrc.nist.gov/publications/detail/sp /800-122/final

Cloud service security architecture reference

The Open Security Architecture (OSA) Patterns SP-011: Cloud Computing Pattern and SP-008:
Public Web Server Pattern provide an overview diagram of the whole system. In addition, SP-
001: client module and SP-002 Server module are also a good reference. Take a look at the
components of the cloud computing pattern in the following link: http://www.op
ensecurityarchitecture.org/cms/library/patternlandscape/251-pattern-cloud-computing

Java web security framework

1-Spring Security

 The Spring Security framework is only for Java- and Spring-based applications. It
provides lots of out-ofbox security controls such as user authentication, CSRF attack
protection, session fixation protection, a HTTP security header, and URL access control.
Also, it supports various kinds of authentication such as Oauth2.0, CAS, and OpenID.

2-Shiro

 Shiro is a more lightweight and simple framework compared to Spring Security. The key
difference between Shiro and Spring Security is that Shiro doesn't require a Spring-
based application, and it can run standalone without tying into any web framework or a
non-web environment.

3-Object Access Control (OACC)

 OACC primarily provides authentication and authorization. The key characteristic of
OACC is that it provides a security relationship with application resources while Spring
Security defines authorization by URL, methods, and roles.

 A security relationship example definition in OACC may be: (Sara) has (READ, EDIT)
permissions on (TimeSheet.xls). Being able to establish the application resource
(TimeSheet.xls) in a security relationship is a unique authorization model in OACC.

Non-Java web security frameworks

1-Node.JS

 Passport framework is an authentication module for Node.JS.

2-Ruby on Rails

 Devise Security: This is a security module for Ruby. It provides security features such as
password complexity, CAPTCHA, user account inactivity checks, verification code, and
session control for the web

3-ASP.NET

 ASP.NET Core provides security features such as authentication, authorization, anti-
XSS, SSL enforcement, anti-request forgery, encryption, and also APIs to support
GDPR.

4-Python

 Yosai is a security framework for Python applications
 Flask Security: It provides common security controls to Flask applications such as

authentication, password hashing, and role management.

Web readiness for privacy protection

 TLS for secure data transmission: The misconfiguration of TLS may result in insecure

data transmission or man-in-the-middle attacks.
 Referrer Policy: The Referrer Policy defines how the browser should handle Referrer

information, which reveals the user's original visiting web site. The website visiting
history is also considered to be personal privacy information.

 Cookie Consent Disclaimer: To comply with the GDPR, the collection of cookie

information and the use of any third-party cookies will require explicit cookie consent.
 HTTP Security Headers: The HTTP protocol itself provides web security controls.

Please also refer to the following table for the suggested HTTP security header
configurations.

The following table summarizes the technical parts of privacy security requirements and
suggested tools to assess and build the web:

1-Secure Communication: HTTPS by default and secure configuration of TLS.

 SSLyze, SSLScan, and TestSSLServer included in Pentest Box or Kali Linux

2-The origins of a visiting website source should not be leaked to other websites by the referrer
header

 Referrer Policy defines how the referrer can be used. The configuration of the Referrer
Policy depends on the requirements

 no-referrer will ensure the browser never sends the referer header.
 If the information is needed, it's suggested to configure sending information over HTTPS

by using 'strictorigin'.

3-If Google Analytics is used, enable privacy extension to anonymize IPs.

 Enable IP masking for Google Analytics

4-Third-party cookies or embeds services (such as Google Analytics), with user consent.

 Cookie Consent
 Cookie Consent JavaScript plug-in: https ://github.com/insites/cookieconsent

5-HTTP Security Headers

The following are the suggested mandatory examples of secure http headers.

 Content-Security Policy (CSP) "defaultsrc 'self' "
 Referrer-Policy "no-referrer"
 Strict-Transport-Security "maxage=31536000"
 X-content-Type-options "nosniff"
 X-Frame-Options "SAMEORGIN"
 X-Xss-Protection "1;mode=block"
 Cookie "Secure"

Refer to OWASP Secure Headers Project for details of each security headers definition.

Privacy Score Assessment: https://privacyscore.org.

Login protection

Login protection can be seen as the first defense layer of the application.

If the number of login failures reaches a certain threshold level, the system should take action,
such as banning the IP source:

Tools/modules for login protection are summarized in the table:

1-Detect the number of login failures in logs and take action

Fail2Ban

2-CAPTCHA solution to prevent machine brute-force login attacks

VisualCaptcha to build your own CAPTCHA service, Google reCAPTCHA

Cryptographic modules

The recommended encryption modules that the development team may need are shown here:

1-OpenSSL

 Full-featured and most widely used cryptography and SSL/TLS toolkit

2-Bouncy Castle Crypto APIs

 Lightweight cryptography Java API

3-mbed TLS

 OpenSSL alternative
 Cryptographic and SSL/TLS in embedded products
 Cryptography C API

4-SSLyze

 Verify the secure TLS configuration of the web server

In addition, an operation team may care more about the configuration of encryption on servers
such as web servers, SSH, Mail, VPNs, database, proxy, and Kerberos.

Refer to Applied Crypto Hardening: https://betterCrypto.org/static/applied-crypto-hardening.pdf.

Input validation and sanitization

Input validation is like the perimeter security control of the whole application. The input not only
includes data input from users but also covers the parameters passing between function calls,
methods, APIs, or systems. The concept of validation covers various kinds of technical
approaches:

Techniques Purpose Example

Canonicalization
Normalization

Process input data into known or
expected form.

 URL decode/encode
 File path or names

handling

Sanitization Sanitization is to remove illegal
characters or make potentially risky

 Escape: replace < > ' "
& with HTML entities.

data safe. Always sanitize an output
to avoid XSS.

Validation To check if the input is valid or within
the constraint data type, length, and
so on.

 IsAlpha, isCreditCard,
isDecimal, isIP

Secure coding requires the following:

 Normalize strings before validating them
 Canonicalize path names before validating them
 Perform any string modifications before validation
 Canonicalize a URL before it is used

For example sanitization to prevent XSS:

For general canonicalization, sanitization, and validation, we can apply the APIs provided by the
mature security framework, while the development team can focus more on business logic
validation:

1-Java

 Java OWASP Java HTML Sanitizer

2-Ruby on Rails

 Active Record Validations

3-Node.js/JavaScript

 Validators

4-JavaScript

 DOMPurity to sanitize HTML and prevents XSS attacks

5-python

 Cerberus

Data masking

Data masking is the process of obfuscating original/sensitive data to protect it. There are five
typical key scenarios that require data masking. Different tools are required based on different
roles or usage scenarios:

Scenario Involved
roles

Required
tools/modules

1-The application receives data and will do data
masking based on defined policies

Developer Data masking
modules

 Data masking
policies

2-Define the PII data tag and access policies DBA PII metadata
definition

 PII access
policies

3-Query results with data masking based on defined
PII tags and access policies

Data query
users

 Dynamic data
masking

4-The operation team may monitor and check if there
is any PII in data, files, configuration, or any
unstructured data

Operation
team

 PII data
discovery

5-Any PII in the logs or files must be masked before
further processing

Support
team

 Data
Anonymizer
tools

Third-party open source management

An organization should set up its own internal open source and third-party software database
and selection criteria. The database keeps records of open source or in-house developed
components adopted in projects. It will provide a good framework selection reference for similar
projects such as the web security framework we discussed earlier. If you are looking for an open
source component search database, try Open Hub. You may search open source projects and
find what you need for the project: https://www.openhub.net/.

Furthermore, the open source selection criteria help to reduce legal and quality risks. A typical

criteria checklist is listed in the following table:

Selection criteria Example and description

Does the open source
community fix the
security issue in a timely
manner?

 High-security risks fixed within 1 month.

Adoption of latest and
stable releases

 Official and stable release by the community.

Availability of technical
support?

 The open source community provides official technical
support and issues feedback.

Software licenses with
GPL and LGPL are less
preferred.

 Licenses with GPL and LGPL are not preferred. If any GPL
software components are used, custom-developed source
code may also need to be available as open source.

 The binary analysis tool (BAT) is suggested for license
scanning based on binary files:
htt p://www.binaryanalysis.org/.

Vulnerability status and
fixes

Search for the vulnerability status of the components. For more
details, please visit https://nvd.nist.gov/vuln/search.

Software release or
update frequency

Was the latest version released within 6 months or several years
ago?

Software architecture Is it using the latest software technologies or legacy framework?

For the security of open source components, the recommended security practices and tools
during the DevOps stages are summarized in the table:

Stage Activities Recommended Tools/Practices

Design and
Selection

Selection of Open Source. http://www.openhub.net/
 Open Source selection checklist
 In-house Open source database

Package
Delivery

Identify all the dependencies in the
project and check known
vulnerabilities.

 OWASP dependency check
 OWASP dependency Track

Package
Deployment

On-line services monitoring and
scanning of CVE.

 CVE database (https://n
vd.nist.gov/vuln/search)

 NMAP or OpenVAS scanning

Also, refer to SAFECode Managing Security Risks Inherent in the Use of Third-party
Components: https://www.safecode.org/wp-
content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf.

Module 6: Threat Modeling
Practices and Secure Design

http://www.openhub.net/
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

Threat modeling with STRIDE

The STRIDE threat model defines threats in six categories, which are spoofing, tampering,
repudiation, information disclosure, denial of service, and elevation of privilege. It's normally
used to assess the architecture design.

The threat STRIDE model and general security mitigation are summarized in the following table.
In addition to STRIDE, it's also suggested to include privacy in the analysis:

STRIDE threats Mitigation

Spoofing Authentication such as credentials, certificates, and SSH

Tampering Integrity (HASH256, digital signature)

Repudiation Authentication, logging

Information Disclosure Confidentiality (encryption, ACL)

Denial of Service Availability (load balance, buffer, message queue)

Elevation of Privilege Authorization (ACL)

Privacy (additionally included) Data masking, access control, user consent, removal

Refer to OWASP Application Threat Modeling for more examples based on the DFD diagram:
https://www.owasp.org/index.php/Application_Threat_Modeling.

Diagram designer tool

The Microsoft Threat Modeling tool, OWASP Threat Dragon, and Mozilla SeaSponge are the
tools in this category that allow you to draw DFD diagrams with threat analysis:

 Microsoft Threat Modeling Tool:
https://www.microsoft.com/en-us/download/de tails.aspx?id=49168

 OWASP Threat Dragon: https://www.owasp.org/index.php/OWASP_Threat_Dragon
 Mozilla SeaSponge: http://mozilla.github.io/seasponge/

Threat library references

1-CAPEC

It lists 508 attack patterns in a tree view. The attack patterns are also available in CSV and XML
format. Each attack pattern is labeled with a CAPEC-ID number.

2-ATT&CK

The threats are categorized by platform (Linux, Windows, Mac, mobile) with specific attack

techniques. Each threat is also discussed with technical mitigation and detection approaches. It
includes lots of practical hacker and malware attack techniques.

3-CWE

CWE is a list of software weaknesses. Each CWE is categorized into a threat tree view and
presented with both insecure and secure source code implementations. It's also a very good
reference for secure coding

Module 7: Secure Coding Best
Practices

Secure coding industry best practices

Depending on programming languages, secure coding standards are summarized in the
following table:

1-CERT Secure Coding

This provides secure coding standards for C, C++, Java, Perl, and Android

2-Find Security Bugs

This provides bug patterns with samples of vulnerable code and solution for Java.

3-CWE

This provides vulnerable source code samples from the perspective of common software
weaknesses. The coding samples cover C, C++, Java, and PHP.

4-Android

Android Application Secure Design and Secure Coding Guidebook

5-OWASP SKF

 OWASP Security Knowledge Framework.
 It can be used as an internal security knowledge base, which includes OWASP ASVS

and secure coding knowledge.

6-PHP Security

 OWASP PHP Security Cheat Sheet

7-OWASP Code Review

 OWASP Code Review Project

8-Apple Secure Coding Guide

 Apple Secure Coding Guide

9-Go

 Go Secure Coding Practices for GO language

10-JavaScript

 JavaScript Secure Coding Practices

11-Python

 OWASP Python Security Project

Secure coding awareness training

A case study or scenario-based vulnerable source code example will have better training effects
than simply secure coding rules. The following are good references in this area and provide a lot
of vulnerable and secure best practice code samples:

 OWASP Security Knowledge Framework: https://www.securityknowledgef
ramework.org/

 Android Application Secure Design and Secure Coding Guidebook:
http://www.jssec.org/dl/android_securecoding_en.pdf

 Find Security Bugs Patterns for Java: https://find-sec-bugs.github.io/
 OWASP Teammentor: https://owasp.teammentor.net/angular/user/index

High-risk module review

The following table lists high-risk modules that require further review:

1-Authentication

 Accounts registration
 Login and CAPTCHA
 Password recovery or reset
 Password changes
 Identity and password storage and access control
 Account lockout control after multiple failures

2-Authorization

 Sensitive resource access
 Administration management

3-Configuration

There are two kinds of review in the configuration:

 Secure configurations of the applications, such as turning off debug mode and enabling
TLS communication.

 The impact of the configuration for each software release

http://www.jssec.org/dl/android_securecoding_en.pdf
https://find-sec-bugs.github.io/

4-Finance

 Payment functions
 Order and shopping carts

5-File handling

 File upload
 File download

6-Database

 Database query
 Database add, update, and delete

7-API interface

 Restful API interfaces
 Third-party integration interfaces

8-Legacy

 Modules that don't support secure communication

 Modules that may still use weak encryption algorithms
 Uses of banned or dangerous APIs

9-Encryption

 Uses of banned encryption algorithms
 Hardcoded sensitive information or comments in the source code during development,

such as IP, email, password, or hidden hotkey

10-Session

 Concurrent session control and detection
 The randomness of the session ID and expiration period

Secure code scanning tools

Here are some commonly used open-source secure coding analysis tools, as in 2018. Note that
we only list open source tools here:

Tools Background and key characteristics of the scanning tool

C/C++ Infer
 CPP Check
 Flawfinder
 Clang Static Analyzer

Java Infer
 SpotBugs
 PMD

Android MobSF

PHP Phan
 PHPMD

Ruby DawnScanner

Python Pylint

JavaScript ESLint
 JSHint
 Retire.JS
 PMD

Dependencies vulnerabilities OWASP Dependency check
 PHP Security Checker
 Retire.JS

Language-independent SonarQube
 DREK
 Graudit
 VisualCodeGrepper

Secure compiling

The common secure options are summarized in the following table:

Protection techniques Secure options OS/Compiler

Address Space Layout
Randomization (ASLR)

echo 1
>/proc/sys/kernel/randomize_va_space

Android, Linux
OS

Stack-based buffer overrun
protection

-fstack-protector –fstack-protector-all gcc

GOT Table Protection -Wl,-z, relro gcc

Dynamic link path -Wl,--disable-new-dtags,--rpath [path] gcc

Nonexecutable stack -Wl,-z,noexecstack gcc

Image randomization –fpie –pie gcc

Insecure C runtime function
detection

–D_FORTIFY_SOURCE=2 –Wformat-
security

gcc

Stack-based buffer overrun
defenses (Canary)

/GS MS Visual C++

Address Space Layout
Randomization (ASLR)

/DYNAMICBASE MS Visual C++

CPU-level NoeXecute (NX)
support. Data Execution
Prevention (DEP)

/NXCOMAT MS Visual C++

Safe-structured exception
handling

/SAFESEH MS Visual C++

Enable additional security check /SDL MS Visual C++

 For further reference and a description of each protection technique, here are some references:

 SAFECode Development Practices: https://www.safecode.org/publication/S
AFECode_Dev_Practices0211.pdf

 OWASP C-based ToolChain Hardening: https://www.owasp.org/index.php/C-
Based_Toolchain_Hardening

 Linux Audit ASLR: https://linux-audit.com/linux-aslr-and-kernelrandomize_va _space-
setting/

 MS Security Best Practice for C++: https://msdn.microsoft.com/en-us/libra
ry/k3a3hzw7.aspx

 Secure Compiler and linker flags for GCC: https://developers.redhat.com
/blog/2018/03/21/compiler-and-linker-flags-gcc/

To verify whether the application or the environment has been configured with secure options,
the following tools are useful:

 CheckSec: http://www.trapkit.de/tools/checksec.html
 BinScope: https://www.microsoft.com/en-us/download/details.aspx?id=44995

Module 8: Security Testing
Toolkits

General security testing toolkits

The objective of providing security testing toolkits is for project teams to understand what tools
are available and apply the tools that they judge to be appropriate based on the business
application scenario. There are many kinds of security testing tools. An organization may define
one general testing toolkit for all projects, and also suggest other security testing tools based on
those specific domains, such as automation, infrastructure, Docker, and BDD:

https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
https://www.owasp.org/index.php/C-Based_Toolchain_Hardening
http://www.trapkit.de/tools/checksec.html

The following table shows the recommended minimum security testing toolset (only open source
or free tools are listed here):

1-WhiteBox review

GraudIT or GREP-IT

These tools are recommended because they don't require a whole buildable source code to
identify the security issue for different programming languages:

 GraudIT: https://github.com/wireghoul/graudit
 GREP-IT: https://github.com/floyd-fuh/crass/blob/master /grep-it.sh

2-Web

BurpSuite, OWASP ZAP, Vega, SQLmap, Arachni

3-Vulnerability

Nessus, OpenVAS, OpenSCAP, NMAP

4-Networking

NMAP, WireShark, TCPDump, Hping, SSLScan, SSLyze, masscan

Automation testing criteria

The web security testing can be automatically triggered every time the build is submitted. To be
able to integrate web security testing tools with Jenkins, there are several key criteria that we
need to consider:

 Command console: Most security testing tools provide a command console or GUI

interface to operate the security testing procedures. It would be ideal for the tool to
provide both interfaces. The command console can be used for Jenkins to trigger the
execution of the security testing, and the GUI can help the human testing. From the
automated testing point of view, the command-line interface (CLI) is a minimum

https://github.com/wireghoul/graudit

requirement to integrate with Jenkins. The CLI interface also helps us to integrate with
the unit test framework or BDD framework.

 API interface: The web security testing can be executed in a standalone attacker mode

or a proxy mode. The API interface will allow us to interact with the testing tool
programmatically during runtime. For example, the OWASP ZAP provides a REST API
to automate all the operations using Python and also the ZAP CLI to interact with ZAP
from the command line.

 Output formats: Most web security testing tools provide different kinds of reporting
formats, such as HTML, PDF, XML, CSV, JSON, or console output. CSV, JSON, and
XML are considered the basics if we would like to import the testing results together.
Because of the various security tools and large quantities of results in the daily report,
it's suggested that you apply integrated security testing tools, such as OWASP
DefectDojo, to consolidate all the testing results in one dashboard (this option will be
discussed later). In addition, some tools may provide the Jenkins plugin, which can help
you to output the results in the Jenkins management console.

Just be aware that the web security automated test can't complete all web security tasks. Some
testing scenarios still require a human security tester to guide the tool and perform further
verification, such as authentication, web page authorization, business logic-related tests, and
multiple order submissions. The following table displays the tools and their features:

Web GUI CLI REST API

OWASP ZAP Yes ZAP CLI ZAP API

Arachni Yes Yes Yes
(It also provides Ruby libraries.)

W3af Yes Yes Yes

Nikto n/a Yes n/a

Wapiti n/a Yes n/a

Android security testing

Generally, the following are considered common testing tools when it comes to Android security
testing:

1-ApkTool

ApkTool is used to perform reverse engineering for Android APK files

2-ByteCode View

ByteCode View is a Java Bytecode viewer and GUI Java decompiler.

3-Dex2JAR

Dex2JAR converts the DEX to a CLASS file.

4-JADX

JADX converts the DEX to a Java decompiler.

5-JD-GUI

JD-GUI is a GUI viewer that is used to read the source code of CLASS files.

6-Drozer

Drozer is an interactive security and attacks framework for the Android app.

7-Baksmali

Baksmali is an assembler/disassembler for the DEX format.

8-AndroBugs

AndroBugs takes an APK file as input and performs an APK security vulnerabilities scan.

9-AndroGuard

AndroGuard is a Python framework that can perform reverse engineering and malware analysis
of the APK.

10-QARK

Quick Android Review Kit (QARK) works similarly to AndroBugs. It detects security
vulnerabilities for APK files.

11-AppMon

AppMon can monitor API calls for both iOS and Android apps.

To install and configure the tools separately can be very time-consuming, so it is suggested that
you use the following toolkits, which have most of the Android security testing tools preinstalled:

1-AndroL4b

2-Appie

3-PentestBox

Securing infrastructure configuration

Securing the infrastructure configuration is vital in ensuring that the infrastructure configurations
and system hardening are compliant with industry security best practices, such as CIS
benchmarks, PCI-DSS, and the National Checklist Program (NCP).

If the DevOps team have applied infrastructure tools, such as Chef or Puppet, it's highly
recommended that you define the security configuration on top of these tools to achieve the
goal of infrastructure security as code.

This helps to move the infrastructure security from the operation stage to the development
stage. The Inspec, Hardening Framework, and ServerSpec tools are tools that are used for
checking infrastructure security configurations. You can learn more about them at the following
links:

 Inspec: https://www.inspec.io/
 Hardening Framework: https://Dev-Sec.io
 Serverspec: https://serverSpec.org/

For an infrastructure environment that is not deployed with configuration

management tools (Puppet, Chef, Ansible, or SaltStack), the following

scanning tools are suggested:

 Lynis Security Auditing: https://github.com/CISOfy/lynis
 OpenSCAP: https://www.open-scap.org/
 CIS Benchmarks: https://www.cisecurity.org/cis-benchmarks/

For a sample of the scanning result of OpenSCAP, go to https://www.open-scap.o rg/wp-
content/uploads/2015/09/ssg-rhel7-ds-xccdf.report.html.

Docker security scanning

Generally speaking, there are three kinds of Docker security tools that do one of three different
things:

 Scan for Docker security best practices based on CIS (Docker Bench, Actuary)

 Scan for known common vulnerabilities and exposures (CVEs) (Claire, Anchor Engine)
 Runtime threat analysis (Falco, Dagda)

Here are the open source security testing tools for Docker security:

1-Docker Bench

Docker Bench is an automated script that checks the Docker security best practices
compliance.

The scanning rules are based on the CIS Docker Security Benchmark.

 Docker Bench Security: https://github.com/docker/docker-benc h-security/
 Docker Benchmark: https://benchmarks.cisecurity.org/

2-Actuary

Actuary works similarly to Docker Bench. Additionally, Actuary can scan based on user-defined
security profiles from the Docker security community.

 Actuary: https://github.com/diogomonica/actuary/

3-Clair

Clair is a container image security static analyzer for CVEs.

 Clair: https://github.com/coreos/clair

4-Anchor Engine, Anchor Cloud

https://www.inspec.io/
https://dev-sec.io/
https://www.open-scap.org/

Anchor Cloud and Anchor Engine scan the Docker images for CVEs. Anchor Engine is a hosted
tool and Anchor Cloud is a cloud-based tool.

 Anchor Engine: https://github.com/anchore/anchore-engine
 Anchor Cloud: https://Anchore.com/cloud/

5-Falco

Falco is a Docker container runtime security tool that can detect anomalous activities.

 Falco: https://sysdig.com/opensource/falco/

6-Dagda

Dagda is an integrated Docker security tool that provides runtime anomalous activities detection
(Sysdig Falco), vulnerabilities (CVEs) analysis (OWASP dependency check, Retire.JS), and
malware scanning (CalmAV).

 Dagda: https://github.com/eliasgranderubio/dagda/

Integrated security tools

If you are looking for such an integrated security testing management tool, here are some of the
open source and free tools to consider:

1-JackHammer

JackHammer, provided by Ola, is an integrated security testing tool. It provides you with a
dashboard to consolidate all the testing results. The key difference is that JackHammer includes
mobile app security scanning and source code static analysis tools. The supported open source
security scanners include Brakeman, Bundler-Audit, Dawnscanner, FindSecurityBugs, PMD,
RetireJS, Arachni, Trufflehog, Androbugs, Androguard, and NMAP. The following screenshots
show a typical example of its integrated interface.

 JackHammer: https://github.com/olacabs/jackhammer
 Additional information: https://jch.olacabs.com/userguide/

2-Faraday

Faraday is an integrated penetration testing environment, and provides a dashboard for all the
testing results. It integrates with over 50 security tools.

 Faraday: https://www.faradaysec.com/#why-faraday
 Additional information: https://github.com/infobyte/farada y/wiki/Plugin-List

3-Mozilla Minion

Mozilla Minion is also an integrated security testing tool that includes the following plugins by
default:

 ZAP
 Nmap
 Skipfish
 SSLScan

https://github.com/anchore/anchore-engine
https://github.com/olacabs/jackhammer
https://www.faradaysec.com/#why-faraday

You can find Mozilla Minion at https://github.com/mozilla/min ion/

4-Penetration testing toolkit

Penetration testing toolkit provides a unified web interface for many Linux scanning tools, such
as nmap, nikto, WhatWeb, SSLyze, fping, URLCrazy, lynx, mtr, nbtscan, automater, and
shellinabox.

 Penetration testing toolkit: https://github.com/veerupandey/ Penetration-Testing-Toolkit

5-Seccubus

The key advantage of using Seccubus is that it integrates with various kinds of vulnerability
scanner testing results, and also compares the differences between each scan. It includes the
following scanners:

 Nessus
 OpenVAS
 NMAP
 Nikto
 Medusa
 SSLyze
 SSL Labs
 TestSSL.sh
 SkipFish
 ZAP

You can find Seccubus at https://github.com/schubergphilis/Sec cubus.

6-OWTF

Offensive Web Testing Framework (OWTF) is an integrated security testing standards OWASP
testing guide and includes PTES and NIST tools.

 OWTF: https://owtf.github.io/
 Additional information: https://owtf.github.io/online-pass ive-scanner/

7-RapidScan

RapidScan is a mult-itool that includes a web-vulnerability scanner. The security scanning tools
that it contains include nmap, dnsrecon, uniscan, sslyze, fierce, theharvester, and golismero.

8-DefectDojo

The OWASP DefectDojo is a security tool that can import and consolidate various security
testing tool outputs into one management dashboard

DefectDojo: https://github.com/DefectDojo/django-DefectDojo

https://owtf.github.io/

Module 9: Security Automation
with the CI Pipeline

Security in continuous integration

The following diagram shows the security practices in each phase, namely, coding, build,
testing, and production deployment:

Security practices in development

The following diagram shows the overall security practices we can plan into the development
stage. We will introduce some of the open source security tools and practices for these security
activities in the upcoming sections:

Dependency check

The following tools will help you scan for vulnerable components:

1-OWASP Dependency Check

The OWASP Dependency Check scans for dependency vulnerabilities in Java, Ruby, PHP,
JavaScript, Python, and .NET.

2-Retire.JS

Retire.JS scans for vulnerable JavaScript libraries

3-Snyk

Snyk scans for the JS, Ruby, Python, Java vulnerabilities.

Web automation testing tips

The following table contains some suggested tips to improve the testing efficiency and
effectiveness for uses of web automation testing tools, such as ZAP or Arachni:

Testing tips Description

Integration To do automated integration, try to understand that the web security tools
provide the following:

 Headless execution mode
 Command-line interface
 REST API
 Jenkins plugin (this may be optional as long as one of te preceding

tools is provided)
For example, the OWASP ZAP (https://github.com/Grunny/z ap-cli/) provides
the ZAP CLI interface, which also helps make the integration easier.

Authorization
testing

To test the guest, user, and admin permissions for every web service's URL
or resources will require proper predefined navigation workflows. The testing
scenario may include the following:

 Session fixation, reuses, expiration
 User, role, guest, administration permissions
 Login, logout, and reauthentication behaviors

There are two main approaches for the security testing:
 Use Selenium or Robot Framework to do the authentication and use

OWASP ZAP to detect the security issue
 Preconfigure the pages or URLs that require authentication in OWASP

ZAP or Arachni

Scanning
scope

Dynamic web testing may take a very long period of time. Properly configure
the scanning scope to include or exclude the URLs that are being tested. Only
apply a complete full scan when the application passes the smoke testing. A
complete scan can be scheduled to be done on a nightly basis

API fuzz The web service may provide several REST JSON or SOAP XML APIs. It's
suggested that you get a complete API list and specifications. Do the fuzz
testing on the parameters of each API. Once this has been done, run the
OWASP ZAP or the Arachni in proxy mode to intercept all the API calls. Then,
investigate these API calls for further fuzz testing with the parameters in the
payload.
For the fuzz security payload test, consider replacing the value of the
parameters with the following data in the fuzzDB:

 https://github.com/fuzzdb-project/fuzzdb/
 https://github.com/minimaxir/big-list-of-naughty-strings/

Radamsa can be used to automatically generate fuzzing data:
 https://github.com/aoh/radamsa

Business
logic

Some web UI workflows need to be operated in order, such as shopping for
items, ordering the items, and payment. Here are some approaches to help
you handle this kind of security testing:

 Use existing functional Selenium automation UI testing and run the
OWASP ZAP or Arachni in proxy attack mode.

 Use the script provided by OWASP ZAP to integrate with Selenium.
Refer to the Zap webdriver (https:/github.com/continuumsecurity/zap-
webdriver) as an example

 Apply the BDD Security framework (https://github.c
om/continuumsecurity/bdd-security/).

https://github.com/fuzzdb-project/fuzzdb/

 Manually operate the web pages to navigate the flow and save the
ZAP sessions for further security scanning.

Security automation in Jenkins

The following table shows an example of how to configure the command-line ZAP, which can be
triggered periodically and remotely by a predefined URL:

Steps Configuration steps

New
item

New Item | Enter an Item Name | "Security Testing" | Freestyle Project | OK

General Project Name: "Security Testing"

Build
Trigger

The automation testing can be triggered by the schedule in the following ways.
The Build Trigger defines how the tasks can be triggered. There are two modes
supported: one is the scheduled mode and the other is the remote trigger by the
REST API:
Build Periodically: 45 9-17/2 * * 1-5
The automation testing can also be triggered remotely by sending the HTTP
request:
Trigger builds remotely: ZAP
Once it's defined, this will be the URL that can be triggered remotely to kick off the
automation execution:
https:///job/Security Testing/build?token=ZAP

Build Build | Add Build Step
Execute the Windows batch command:
echo ---- the execution of OWASP ZAP for Active Scan----
zap cli active-scan http://targetWeb/
echo ---- The end of OWASP ZAP active Scan ----

The following table lists the common Jenkins plugins that are related to software security
assessment:

Jenkins Security
plugins

Description

ZAP ZAP is a dynamic web scanning tool.

Arachni Scanner Arachni Scanner is a dynamic web scanning tool.

Dependency
Check plugin

The Dependency Check plugin detects vulnerable dependency
components.

FindBugs FindBugs is a static code analysis tool for Java.

SonarQube SonarQube is a code quality analysis tool.

360 FireLine 360 FireLine is a static code scanner for Java.

HTML Publisher
Plugin

The HTML Publisher plugin generates the testing results in HTML

Log Parser Plugin The Log Parser plugin parses the testing results of the security testing
tools, such as the number of XSS detected or the number of errors.

Static Analysis
Collector

The Static Analysis Collector plugin can consolidate the results from all
other static code analysis plugins, such as Checkstyle, Dry, FindBugs,
PMD, and Android Lin.

Module 10: Incident Response

Security incident response process

Here are some of the recommended industry references related to security incident response:

 NIST SP 800-62 Computer Security Incident Handling Guide (https://cs
rc.nist.gov/publications/detail/sp/800-61/rev-2/final)

 SANS Incident Handler Handbook (https://www.sans.org/reading-room/whitep
apers/incident/incident-handlers-handbook-33901)

 ENISA Cloud Computing Benefits, risks, and recommendations for information security
(https://resilience.enisa.europa.eu/cloud-security-and-res ilience/publications/cloud-
computing-benefits-risks-and-recommendations-for-infor mation-security)

 MITRE Ten Strategies of a World-Class Cyber Security Operations Center
(https://www.mitre.org/sites/default/files/publications/pr-13-1028-mitre10-strategies-
cyber-ops-center.pdf)

 FIRST (https://www.first.org/education/FIRST_PSIRT_Service_Framework_v1.0)

NIST SP 800-62 defines the incident response life cycle as consisting of four phases:
preparation, detection and analysis, containment eradication and recovery, and post-incident
activity. We will introduce some practical tools

for each phase in the upcoming sections:

https://www.mitre.org/sites/default/files/publications/pr-13-1028-mitre10-strategies-cyber-ops-center.pdf
https://www.mitre.org/sites/default/files/publications/pr-13-1028-mitre10-strategies-cyber-ops-center.pdf

Preparation

Here are some suggested security practices to be performed in the incident response

preparation phase:

 Incident handler communication plan
 Incident analysis hardware and software tools (refer to the section on incident forensics)
 Existing networking diagram and baselines
 Prevention controls, such as risk assessments, host security, network security, malware

protection, user awareness, and training (refer to the CIS security controls)
 The blue and red team security exercise (refer to the following table)
 Bounty program for whitehat hackers or security researchers to submit security issues

The following open source tools can help to generate an internal attack simulation without
compromising business operations. These tools don't generate real attack samples, but
simulate the behaviors of hacking or advanced persistent threat (APT) behaviors:

Tools Simulation of APT

DumpsterFire The DumpsterFire tool includes various kinds of simulated attack
scenarios, such as an account attack, file download, drop files, command
execution, and web access in Python. It provides a user-friendly menu to
customize the security incidents, even for those who don't understand
Python.

METTA The METTA tool allows the security team to customize the simulation of
APT attacks based on MITRE ATT&CK. The simulated APT behaviors

defined by YAML include credential access, evasion, discovery, execution,
exfiltration, lateral movement, persistence, and privilege escalation.

Red Team
Automation
(RTA)

The Red Team Automation tool is a collection of Python and PowerShell
scripts that can simulate over 50 malicious behaviors based on ATT&CK.

Atomic Red
Team (ART)

The Atomic Red Team tool provides Windows, macOS, and Linux shell
scripts to simulate the MITRE ATT&CK.

APT Simulator The APT Simulator tool is a collection of Windows BAT scripts that
simulate APT behaviors.

Network Flight
Simulator

The Network Flight Simulator tool can be used to generate malicious
network traffic, such as DNS tunneling, C2 communication, DGA traffic,
and port scans.

Detection and analysis

Identifying the signs of a security incident requires the deployment of various security solutions
and log sensors. The sources of infections include IDS/IPS, SIEM, antivirus, file-integrity
monitoring, OS/network logs, and public and known vulnerabilities. The deployment of the whole
enterprise's security controls may refer to the CIS Critical Security Controls for Effective Cyber
Defense (you can find the information at https://www.cisecurity.org/controls/).

These consist of 20 security controls, as summarized in the following table. There are many
commercial solutions in each security control, but only open source solutions are listed in the
table:

Cybersecurity controls Examples of security techniques
and open source tools

CSC1: Inventory of Authorized and Unauthorized
Devices

Endpoint security, Asset
Management

CSC2: Inventory of Authorized and Unauthorized
Software

Endpoint security, Asset
Management

CS3: Secure Configurations for Hardware and
Software on Mobile Devices, Laptops, Workstations,
and Servers

CIS Security Benchmark,
OpenSCAP.

CSC4: Continuous Vulnerability Assessment and
Remediation

OpenVAS
Nmap
OWASP Dependency Check
OWASP Dependency-Track
vulscan

CSC 5: Controlled Use of Administrative Privileges Strong password complexity

https://www.cisecurity.org/controls/

Auditing logs for root and administrator
activities

CSC 6: Maintenance, Monitoring, and Analysis of
Audit Logs

Syslog, Event Logs, SIEM
ELK
GrayLog
Security Onion
Malicious Traffic Detection

CSC 7: Email and Web Browser Protections Email Protection, AntiSpam, Web
Application Firewall
ModSecurity
Email Encryption Scramble
Linux Malware Detection

CSC 8: Malware Defenses Endpoint Protection, Antivirus,
HIDS/HIPS
OSSEC
ClamAV

CSC 9: Limitation and Control of Network Ports,
Protocols, and Services

Nmap
OpenSCAP

CSC 10: Data Recovery Capability Bacula

CSC 11: Secure Configurations for Network
Devices, such as Firewalls, Routers, and Switches

CIS Security Benchmark

CSC 12: Boundary Defense Firewall, IPS, HoneyPot
Security Onion

CSC 13: Data Protection OSQuery
Data Vault

CSC 14: Controlled Access Based on the Need to
Know

Data Classification, Firewall, VLAN,
Logging

CSC 15: Wireless Access Control VPN, SSL Certificate, WAP2

CSC 16: Account Monitoring and Control Log Analysis Tools
Fail2ban

CSC 17: Security Skills Assessment and
Appropriate Training to Fill Gaps

Security Training and Labs Resource
CybraryIT

CSC 18: Application Software Security OWASP

CSC 19: Incident Response and Management NIST SP800-61 Computer Security
Incident Handling Guide
FIR (Fast Incident Response)

CSC 20: Penetration Tests and Red Team
Exercises

Refer to some of the open source tools
we suggested in the Preparation
section

Containment and recovery

For the containment, there are typical network- or host-containment criteria established by
network policy enforcement. Whenever one of the criteria is met, the containment actions can
include blocking that specific host, redirecting the traffic to apply the latest security patches, and
rejecting specific communication traffic or ports.

 The following are common security policy enforcement criteria that will trigger the network or
host containment:

 The host hasn't installed any antivirus products.
 The antivirus pattern/engine versions are not updated.
 There are known vulnerable components on the host.
 There is suspicious communication traffic on the specified ports.
 A known virus is detected on the hosts.
 There is outgoing communication to an external known malicious IP or domain. Refer to

the following resources:
http://iplists.firehol.org/
https://www.spamhaus.org/drop/
https://rules.emergingthreats.net/fwrules/emerging-Block-IPs.txt
https://check.torproject.org/exit-addresses

Security incident response platforms (SIRP)

When handling a security incident, there will be lots of information that needs to be processed
and analyzed. An ideal security incident response platform should be able to do the following:

 Receive alerts and security events from different sources (SIEM, IDS, email)
 The security incident case management should allow a security analyst to add related

logs, IOCs, or findings during the incident case handling life cycle
 Compare its analysis with external threat information, such as VirusTotal, to identify the

malicious behaviors of a file, hash, domain, or IP address

The open source tool TheHive can help you to provide a security incident response
management platform. TheHive can also work with MISP, which is a threat intelligence platform
for sharing and correlating indicators of compromise (which indicate that a targeted attack has
taken place) and vulnerability information. Refer to the following documentation for more
information:

 https://thehive-project.org/

 http://www.misp-project.org/index.html

For more information on how TheHive, CorTex, and MISP can integrate together for a threat
incident response, go to https://blog.thehive-project.org/201 7/06/19/thehive-cortex-and-misp-
how-they-all-fit-together/.

SOC team

http://iplists.firehol.org/
http://iplists.firehol.org/
https://www.spamhaus.org/drop/
https://www.spamhaus.org/drop/
https://rules.emergingthreats.net/fwrules/emerging-Block-IPs.txt
https://rules.emergingthreats.net/fwrules/emerging-Block-IPs.txt
https://thehive-project.org/

The security operations center (SOC), also known as the computer incident response team
(CIRT), is the security team that handles and monitors daily security events.

The organizational structure of SOC can include parts of the existing IT team, an outsourced
team, or a dedicated security team. No matter what kind of structure it has, there are several
key functions that the team will have:

1-Security incident analysis and forensics (call center)

This function team may include the Tier 1 case handling in the 24/7 security monitoring center.
The Tier 1 team typically handles the case by following the predefined checklist or SOP to
perform initial root-cause analysis or mitigation based on the incidents.

2-Security operations and administration

This functional team involves the following routine security activities. These are regular security
checking activities for the production environments:

 Network scanning (weekly)
 Vulnerability scanning (weekly)
 Penetration testing (monthly)
 Security awareness training (bi-monthly)
 Security log trending analysis (monthly)
 Security administration and monitoring (daily)
 Patch or security signature update (daily/weekly)

3-Security tools engineering

The security engineering team implement security tools for the security call center or security
operations team. The security tools can be security automation, suspicious behaviors detectors,
forensic analysis tools, security configurations checker, threat intelligence integration, threat
signatures creation, and so on.

The SOC team can consist of parts of an IT call center or a dedicated security team depending
on the size of the whole organization. A typical dedicated SOC team structure is shown in the
following diagram:

Incident forensics techniques

The NIST SP 800-86 Guide to Integrating Forensic Techniques into Incident Response defines
four major phases to perform digital forensics on a compromised computer:

 Collection: Collect all the relevant logs of the compromised computer or networking
activities logs

 Examination: Extract and correlate the information that may highly relate to suspicious
behaviors

 Analysis: Analyze all the information for root causes of the malicious infection
 Reporting: Conclude the summary results

The forensics techniques require the capability of the incident response team to perform the
analysis. In the following table, we have listed some quickwin solutions that can perform semi-
automated forensics, including collection, examination, and analysis:

Category Tools Purpose and usage scenario

Log
Collection

OSX
Collector

Mac OS X Log Collector is an automated forensic evidence
collection for macOS. The Python script, osxcollector.py, is the
script that performs all the collection jobs. The tool will generate
a JSON file as a summary of the collected information.

Log
Collection

IR Rescue IR Rescue is a Windows and Linux script for collecting host
forensic data. For the Windows version, it integrates several
utilities from the from Sysinternals and NirSoft.

Log
Collection

FastIR
Collector

FastIR Collector (for Linux) only requires one Python script to
collect all related logs in Linux.

For Windows systems, it will require additional modules and
tools. Refer to https:/ /github.com/SekoiaLab/Fastir_Collector for
more information.

Malware
Detector

Linux
Malware
Scanner

Free malware scanners for Linux are available from the following
links:
CalmAV: It's an open source antivirus software for Windows.
Linux Malware Detect (LMD): It's an open source antivirus
software for Linux.

Suspicious
Files Analysis

Cuckoo Cuckoo is an automated malware analysis system. It can analyze
the dynamic runtime and static behaviors of the unknown and
suspicious files under Windows, Linux,macOS, and Android.

Client/Server
log collector
and analysis

GRR
Rapid
Response

You can use Google Remote Live forensics for incident
response. It will require the installation of a Python agent on the
target hosts to collect the logs and on the Python server to do the
analysis.

Client/Server
log collector
and analysis

OSQuery The OSQuery tool works in a similar way to GRR. The key
difference is that OSQuery provides an SQL query to perform
endpoint analysis.
For more information, you can read the documentation at the
following links:

 https://osquery.io/
 https://osquery.readthedocs.io/en/stable/deploymen

t/anomaly-detection/

Module 11: Security Monitoring

Logging policy

This monitoring can be done by various kinds of security tools, such as host IDS, network
IDS/IPS, antivirus software, firewalls, and also security information and event management
(SIEM).

The NIST SP 800-92 Guide to Computer Security Log Management suggests that the log

collection configuration should be based on the security impact to the systems

Examples of logging configuration settings by NIST SP 800-92:

Category Low impact Moderate
impact

High impact

How long to retain log data (Keep in
mind that the cybersecurity law may
also have explicitly requested the log

One to two weeks One to Three

retention period. The number here is
just an example.)

How often to rotate logs Optional (if
performed, at least
every week, or for
every 25 MB)

Every six to 24
hours, or every
2 to 5 MB

Every 15 to
60 minutes or
every 0.5 to
1.0 MB

How frequently the organization
requires the system to transfer log
data to the log management
infrastructure, if it has this policy

Every 3 to 24 hours Every 15 to 60
minutes

At least every
five minutes

How often log data needs to be
analyzed locally (through automated
or manual means)

Every 1 to 7 days Every 12 to 24
hours

At least six
times a day

Whether log file integrity checking
needs to be performed for rotated logs

Optional Yes Yes

Whether rotated logs need to be
encrypted

Optional Optional Yes

Whether log data transfers to the log
management infrastructure need to be
encrypted or performed on a separate
logging network

Optional Yes, if feasible Yes

Security monitoring framework

Building a complete security monitoring framework involves incorporating the following key
components:

 Log collector: This is responsible for collecting and forwarding all the logs to the

security monitoring team for further analysis. In the production environment, the concern
of the log collection is the performance impact of the host and the number of logs
needed to be forwarded. Syslog is the most common way to send the logs to security
monitoring management

 Security monitoring (SIEM): This gives the security administrator a visualized security
overview of the whole environment. An ideal SIEM can even do automated security
correlation analysis based on predefined rules to identify abnormalities and potential
risks.

 Threat intelligence: Threat intelligence is used to correlate the collected in-house
security logs with external threat information, such as blacklisted IPs, Tor exit nodes,
known malicious domains, user agents, file hashes, and the indicators of compromise
(IOC).

 Threat intelligence feeds: These form the threat database that includes known current

threat information provided by cybersecurity communities, security vendors, or customer
submissions. An organization may use the external threat intelligence feeds to correct
internal security events in order to identify whether there are any suspicious activities,
such as internal hosts connected to a known cybercrime IP.

The following diagram shows the typical scope of security monitoring:

Source of information

The various log sources will help you to provide security events in different respects. Here are
some of the general recommendations of the security monitoring focuses:

1-Application logs

These are the operational and error logs generated by the application. If the application is a web
service, the logs may be included in Apache or nginx logs:

 Monitor the user activities, especially those activities that involve access to sensitive
data

 Monitor the major changes of user profiles, such as login IPs, abnormal endpoint
devices, non-browser connection clients, and concurrent connections from different IP
sources

 Monitor the activities of administration and service accounts
 Monitor login failures and web errors, such as 401, 404, and 501

2-Host security, database logs

These mainly rely on the host-based IDS/IPS detection logs, OS, and database logs:

 Successful and failed authentication of users
 Administrative access and changes
 Unauthorized login failure
 Major configuration file changes, such as mysql.cnf

 Database accounts added
 Massive data transmission to specific hosts

3-Vulnerability

The OpenVAS or NMAP scanning results of CVE vulnerabilities

Insecure communication ports or protocols, such as Telnet, SSH v1, SSL, and FTP

4-OpenSCAP

The adoption of OpenSCAP scanning tools can help you to identify the insecure configuration of
the applications, OS, database, and web services

5-Network security, firewalls

Rely on the network IDS/IPS detection logs, and also the logs from the load balancer, switches,
and routers. For the updated firewall rules for IPtables, Snort, and Suricata, refer to the
EmergingThreats website.

6-Web security

Rely on the web application firewall detection logs:

 Client IP is from a blacklisted IP
 User-agent associated with suspicious clients
 Too many errors in the weblogs, such as 401, 404, and 500
 Refer to the OWASP ModSecurity CRS which includes the web application firewall

ruleset.

7-Email Security

Reply to the email security scanning and detection logs:

 Unusual mail receivers or senders
 Malicious Email Attachment
 Malicious URL in message body

Threat intelligence toolset

The whole threat intelligence process normally includes the following key components:

 The log collector: This is used to collect the internal system, applications, and security
logs

 SIEM/visualization: This is used to visualize the security posture in one dashboard
 Threat intelligence platform: This is used to correlate the internal and external threat

information
 Threat intelligence feeds: This is the external threat database, such as the blacklist IP,

malicious hash, suspicious domain, and so on

Here are some of the open source tools that will help you to build the whole threat intelligence

solution:

Category Open source security tools

Log
collector/sensor

Syslog-NG: Syslog-ng is an enhanced log daemon which can handle
not only standard syslog message but also unstructured data.
Rsyslog: Rsyslog stands for a rocket-fast system for log processing.
FileBeat: Filebeat provides a backpressuresensitive protocol that

controls the flow of sending data to Logstash or Elasticsearch
LogStash: Logstash is a data processing pipeline that collects the data,
transforms it, and then sends it to Elasticsearch.

SIEM/visualization Kibana: Kibana provides the visualization of the Elasticsearch data.
ElasticSearch: Search, index and analyze the data in real time.
 AlienValut OSSIM: It's an open source SIEM (Security Information and

Event Management) solution provided by AlienValut.
Grafana: It provides a quick solution for log query and visualization

regardless of the data store.
GrayLog: It's an open soure solution for enterprise log management.

Threat intelligence
platforms

MISP - open source threat intelligence platform:
The MISP is the threat sharing platform which can search and correlate
IoC (Indicators of Compromise), threat intelligence feeds and
vulnerability information.

Threat intelligence
feeds

External threat feeds for blacklisted IP list and firewall rules
suggestions:

 https://rules.emergingthreats.net/fwrules/
 https://www.spamhaus.org/drop/
 https://rules.emergingthreats.net/fwrules/emerging-B lock-IPs.txt
 https://check.torproject.org/exit-addresses

http://iplists.firehol.org/

Security scanning toolset

Here are some open source tools that can perform security monitoring, scanning, and detection.
Although your organization may have some commercial security solutions in place, these open
source security detection rules can be a good reference when optimizing the existing security
detection, such as the IDS/IPS, firewall, and web security.

You may find the following rules helpful to update or improve your existing firewall rules:

 Wazuh host IDS rules: Host-based intrusion defense rules.

 OSSEC host IDS rules: Host-based intrusion defense rules.
 ModSecurity WAF rules: Web Application Firewall rules.
 Suricata network IDS/IPS rules: Network-based intrusion prevention firewall rules.
 Snort network IDS/IPS rules: Network-based intrusion prevention firewall rules.

The table lists the security monitoring tools in each category.

Category Open source security monitoring tools

https://rules.emergingthreats.net/fwrules/
https://www.spamhaus.org/drop/

All-in-one security scanning
(host, network,
visualization)

Security Onion: https://github.com/Security-Onion-Sol utions
This includes several open source security tools, such as
Elasticsearch, Logstash, Kibana, Snort, Suricata, Bro, OSSEC,
Sguil, Squert, and NetworkMiner.

All-in-one hostbased IDS,
secure configuration, and
visualization

The Wazuh integrates the OSSEC (a host-based IDS),
OpenSCAP (secure configuration scanner), and Elastic Stack
(threat visualization).

Secure configuration he OpenSCAP defines the secure configuration for OS, Web,
database, and application.

Vulnerability The OpenVAS and OWASP dependency are two of popular
open source vulnerability scanners.

Antivirus The CalmAV is the open source antivirus for Windows.
The LMD (Linux Malware Detect) is the Linux version open
source antivirus.

Host IDS/IPS The OSSEC and Samhain are two of open source host IDS/IPS
solutions to be considered.

Web application firewall
(WAF)

The ModSecurity which is one of OWASP open source project
is a light-weight web application firewall.

Network IDS/IPS Snort and Suricata are two of the popular open source network
IDS/IPS solutions. These two solutions also provide frequently
updated rules

Malware behavior matching – YARA

YARA (https://virustotal.github.io/yara/) is a pattern-matching Swiss army knife for malware
detection.

For example, say that one host identifies suspicious webshell activities, but the antivirus
software does not detect any suspicious activities. The security administrator can use the YARA
detector with predefined YARA rules to scan all the files on the host or to scan the collected
logs. Here is one example of a YARA rule to detect the web shell:

The YARA rules define two characteristics of a web shell. When the YARA rules are scanned
with any binary files, and if the files match the conditions where the file size is less than 15 KB
and the criteria stipulated under x1 and x2 are also met, then the YARA scanner will identify a
match.

The YARA scanner can be executed as a standalone command-line tool or as a Python plugin.
Refer to the YARA introductory guide Compiling and Installing YARA to get your YARA scanner
on Windows, Linux, and macOS. You can find the guide at https://yara.readthedocs.io/.

The latest YARA rules—as well as the signatures and detection of malware, malicious emails,
webshells, packers, documents, exploit kits, CVEs, and cryptography—can be found at the
following links:

 https://github.com/Yara-Rules/rules
 https://github.com/Neo23x0/signature-base
 https://github.com/InQuest/awesome-yara

Module 12: Security
Assessment for New Releases

The following table shows an example of the relationship between the application releases and
the security assessment scope:

Application release
objective

Security assessment scope

New or major application
release

Full assessment

Third-party component
update

Assessment based on the third party and the integration
interfaces

Patch releases Targeted assessment based on patch scope

Emergency releases The security testing scope is limited to ensure that there are no
major security issues

he following table shows an example of the security assessment activities' execution by the
development, security, and DevOps teams:

Security
review stage

Example key security practices Executed by

Self
assessment

 Review the OWASP ASVS checklist
 Review the OWASP Top 10 checklist
 Execute the defined automated security tools, such

as ZAP, NMAP, and SQLmap

Product
development
team

https://yara.readthedocs.io/
https://github.com/Yara-Rules/rules
https://github.com/Neo23x0/signature-base

 Execute the defined automated security tools, such
as ZAP, NMAP, and SQLmap

Pre-release Submit the self-assessment testing results and the
prerelease package to the security team

 The security team focuses on the assessment with
the highest risk modules

 The security team performs the acceptance security
testing, which includes not only the packages, but
also the secure configurations of the whole system,
such as Linux, MySQL, and NginX

 Manual and automated application and network
security testing will be performed by the security
review team, and you will receive your review
results (see the following results section for more
details)

Security team

Production Perform regular security scans for the following:
 Known CVEs of software components
 Secure configurations
 Network communications, such as ports and

insecure protocols
 OWASP Top 10 security issues

Operation and
security team

Security checklist and tools

the security testing approaches, and the suggested security testing tools:

Security category Security testing approaches Suggested security
testing tools

Hidden
communication
ports or channels

 Ensure that there are no hidden
communication ports or backdoors

 Ensure that there are no hidden
hardcoded secrets, passwords, or hard
keys

 Check for unnecessary system
maintenance tools

 Perform a source code review for
networking communication, such as
Java-related API connect(), getPort(),
getLocalPort(), Socket(), bind(), accept(),
ServerSocket()

 Listening to 0.0.0.0 is forbidden

NMAP
Graudit
TruffleHog
Snallygaster
Hping
masscan

Privacy information Search for the plaintext password and
key in the source code

 Search for the personal information for
the GDPR compliance

TruffleHog
Blueflower
YARA
PrivacyScore

 The personal information can be modified
and removed by the end user

 The personal information can be removed
within a defined period

Snallygaster

Secure
communication

 SSH v2 instead of Telnet
 SFTP instead of FTP
 TLS 1.2 instead of SSL TLS 1.1

NMAP
WireShark
SSLyze
SSL/TLS tester

Third-party
components

 CVE check
 Known vulnerabilities check
 Hidden malicious code or secrets

OWASP
Dependency check
LMD (Linux Malware
Detection)
OpenVAS
NMAP
CVEChecker

Cryptography Ensure that there is no weak encryption
algorithm

 Ensure that there are no secret files on
the public web interfaces

Graudit
SSLyze
Snallygaster

Audit logging Ensure that the operation and security teams can
log the following scenarios:

 Non-query operations, including success
and failure actions

 Non-query scheduled tasks
 API access or tool connections that

execute administration tasks

GREP

DoS attacks The testing of the DoS is to ensure if the
application failure is as expected. The DoS
scenario may cover the following:

 TCP Sync flooding
 HTTP Slow
 HTTP Post Flooding
 NTP DoS
 SSL DoS

Pwnloris
Slowloris Synflood
Thc-sll-DoS
Wreckuests
ntpDoS

Web security To develop a policy concerning web security, you
can refer to the OWASP Testing Guide and
OWASP Top 10:

 Injection
 Authentication
 Data exposure
 XXE Broken
 access control Security
 misconfiguration
 XSS
 Insecure deserialization

OWASP ZAP
BurpSuite
Arachni Scanner
SQLMap

 Known vulnerabilities
 Insufficient logging and monitoring

Secure
configuration

Ensure that the configurations of applications,
web services, databases, and the OS are
secure. The secure configurations are based on
the CIS security benchmark and OpenSCAP.

OpenSCAP
Docker Bench
Security
Clair

Fuzz testing The purpose of fuzz testing is to generate
dynamic testing data as input to check whether
the application will fail unexpectedly.

API Fuzzer
Radamsa
American Fuzzy lop
FuzzDB
Wfuzz

Mobile app
security

Refer to the OWASP Mobile App Mobile Security
Framework

Top common issue Draw up a list of the most common security
issues based on projected historical data.

CWE/SANS Top 25
Most Dangerous
Software Errors

Security
compliance

Security compliance that is based on business
needs may also be included, such as GDPR or
PCI DSS.

Refer to the specific
security compliance
requirements

Module 13: Threat Inspection
and Intelligence

Unknown threat detection

The following diagram shows the concept of correlation or machine learning with different data

sources:

The following are some typical abnormal network traffic examples:

Abnormal network traffic Potential threats

Port/host scan The port or host scan behaviors mean one of the hosts may
have been infected by a malware program, and the
malware program is looking for vulnerabilities, other
services, or hosts on the network.

A high number of outbound
DNS requests from the same
host

This is a symptom of Command and Control (C&C)
malware, establishing communication between the infected
host and the C&C server using the DNS protocol.

A high number of outbound
HTTP requests from the same
host

This is a symptom of C&C, establishing communication
between the infected host and the C&C server using the
HTTP protocol.

Periodical outbound traffic with
samesized requests or during
the same period of time every
day

This is a symptom of C&C malware, establishing
communication between the infected host and the C&C
server.

Outbound traffic to an external
web or DNS listed as a known
threat by threat intelligence
feeds

The user may be tricked through social engineering to
connect to an external known threat web or the C&C
connection is successfully established.

To visualize the network threat status, there are two recommended open source tools: Malcom
and Maltrail (Malicious Traffic detection system). Malcom can present a host communication
relationship diagram. It helps us to understand whether there are any internal hosts connected
to an external suspicious C&C server or known bad sites

https://github.com/tomchop/malcom#what-is-malcom

Indicators of compromises

An analysis of hosts for suspicious behaviors also poses a significant challenge due to the
availability of logs. For example, dynamic runtime information may not be logged in files and the
original process used to drop a suspicious file may not be recorded. Therefore, it is always
recommended to install a host IDS/IPS such as OSSEC (Open Source HIDS SEcurity) or host
antivirus software as the first line of defense against malware. Once the host IDS/IPS or
antivirus software is in place, threat intelligence and big data analysis are supplementary,
helping us to understand the overall host's security posture and any known Indicators of
Compromises (IoCs) in existing host environments.

Based on the level of severity, the following are key behaviors that may indicate a compromised

host:

Abnormal host behaviors Potential threats

Multiple compromised hosts' data
communication to external hosts

The compromised hosts are sending data to external
C&C servers.

The host connects to an external
known APT IP address or URL and/or
downloads a known malicious file

The host shows an indication of compromise from
APT or a malware attack

Several unsuccessful login attempts One of the internal compromised hosts is trying to log
in in order to access critical information.

An email message that includes a
dangerous URL or malicious file

Attackers may use social engineering to send emails
for target attacks. Include the email senders in the
watch list.

Rare and unusual filenames in
process/service/program start

The malware installs itself to start up so as to
continue to act even after rebooting. One of the
common ways in which malware can achieve
persistence is as follows:
In the case of Windows, using AutoRuns to check
whether the host is compromised with suspicious
malware is recommended.
https://docs.microsoft.com/en-us/sysinternals/do

Unusual event and audit logs alert The following system event or audit logs may need
further analysis:

 Account lockouts
 Users added to the privileged group
 A failed user account login

https://github.com/tomchop/malcom#what-is-malcom

 Application error(s)
 Windows error reporting
 BSOD
 The event log was cleared
 The audit log was cleared
 A firewall rule change

An analysis of web access is also very critical, since the majority of internet connections are
based on the HTTP protocol. There are two major scenarios regarding web access. One is the
internal hosts that connect to external websites, and the other is the hosted web services
connected by internal or external hosts. The following table lists some of the common
techniques and tools for web access analysis:

Web access
analysis

Detection techniques

External
source client
IP

The source of IP address analysis can help to identify the following:
 A known bad IP or TOR exit node
 Abnormal geolocation changes
 Concurrent connections from different geolocations

The MaxMind GeoIP2 database can be used to translate the IP address to a
geolocation:
https://dev.maxmind.com/geoip/geoip2/geolite2/#Downloads

Client
fingerprint
(OS, browser,
user agent,
devices, and
so on)

The client fingerprint can be used to identify whether there are any unusual
client or non-browser connections. The open source ClientJS is a pure
JavaScript that can be used to collect client fingerprint information. The JA3
provided by Salesforce uses SSL/TLS connection profiling to identify
malicious clients.
ClientJS: https://clientjs.org/
JA3: https://github.com/salesforce/ja3

Web site
reputation

When there is an outbound connection to an external website, we may check
the threat reputation of that target website. This can be done by means of the
web application firewall, or web gateway security solutions
https://www.virustotal.com/

Random
Domain Name
by Domain
Generation
Algorithms
(DGAs)

The domain name of the C&C server can be generated by DGAs. The key
characteristics of the DGA domain are high entropy, high consonant count,
and long length of a domain name. Based on these indicators, we may
analyze whether the domain name is generated by DGAs and could be a
potential C&C server.
DGA Detector: https://github.com/exp0se/dga_detector/
In addition, in order to reduce false positives, we may also use Alexa's top
one million sites as a website whitelist. Refer to
https://s3.amazonaws.com/alexa-static/top-1m.csv.zip.

https://clientjs.org/
https://github.com/exp0se/dga_detector/

Suspicious file
downloads

Cuckoo sandbox suspicious file analysis:
https://cuckoosandbox.org/

DNS query In the case of DNS query analysis, the following are the key indicators of
compromises:

 DNS query to unauthorized DNS servers.
 Unmatched DNS replies can be an indicator of DNS spoofing.
 Clients connect to multiple DNS servers.
 A long DNS query, such as one in excess of 150 characters, which is

an indicator of DNS tunneling.
 A domain name with high entropy. This is an indicator of DNS

tunneling or a C&C server.

Security analysis using big data frameworks

After discussing some of the common techniques for detecting unknown potential threats, we
are going to introduce some open source frameworks to do security analysis with threat
intelligence and big data technologies. You may consider applying these open source solutions
as a basis if you are planning to build a security log analysis framework that can do the
following:

 Machine learning and correlation with the IoCs
 Analysis involving external threat intelligence feeds
 Data enrichment such as GeoIP information
 Visualization and querying of the relationships of IoCs

Project Key features

TheHive
project

TheHive provides threat incident response case management that allows security
analysts to flag IOCs.
The Cortex can perform analysis with threat intelligence services such as
VirtusTotal, MaxMind, and DomainTools. There are over 80 threat intelligence
services supported.
The Hippocampe provides a query interface through a REST API or a Web UI:
https://thehive-project.org/

MISP This is mainly a threat intelligence platform to share IoCs and indicators of
malware. The correlation engine helps to identify the relationships between
attributes and indicators of malware:
https://www.misp-project.org/documentation/
The MISP provides over 40 threat intelligence feeds. Refer to
https://www.misp-project.org/feeds/

https://www.misp-project.org/documentation/

Apache
Metron

Apache Metron is a SIEM (threat intelligence, security data parsers, alerts, and a
dashboard) and also a security analysis (anomaly detection and machine
learning) framework based on Hadoop's big data framework:
https://metron.apache.org/
Typical technology components used to build a big data framework include the
following:

 Apache Flume
 Apache Kafka
 Apache Storm or Spark Apache Hadoop
 Apache Hive
 Apache Hbase
 Elasticsearch
 MySQL

These open source solutions can work together with one another. For example, TheHive can be
used as a security operation center to manage security incident cases with IoC information, and
integrate TheHive with MISP to query external threat intelligence feeds. Moreover, Metron can
perform log data enrichment and analysis with machine learning to identify abnormalities.

In addition, there are also some open source analysis frameworks based on the Elasticsearch,
Logstash, Kibana (ELK). Refer to the following list:

 Response Operation Collection Kit (ROCK) NSM: http://rocknsm.io/
 A Hunting Elasticsearch, Logstash, Kibana (ELK) with advanced analytical capabilities:

https://github.com/Cyb3rWard0g/HELK
 Cyber Analytics Platform and Examination System (CAPES): http:// capesstack.io/

TheHive

TheHive is a security incident response platform that integrates Malware Information Sharing

Platform (MISP). The Cortex can help to analyze observables using external threat analysis
services such as VirusTotal, DomainTools, and MaxMind. The Hippocampe provides the REST
API or Web UI to enable users to carry out analysis reports and perform queries.

The following diagram shows the collaboration between TheHive, Cortex, SIEM, and also MISP:

https://metron.apache.org/

MISP – an Open Source Threat Intelligence Platform

MISP is a Threat Intelligence Platform that can carry out correlations with threat attributes,
IOCs, and indicators. MISP can also generate Snort/Suricata IDS rules, STIX, and OpenIOC
detection rules based on the IOCs observed.

The following diagram refers to MISP (Malware Information Sharing Platform):

In addition to MISP, you may also refer to the open source Your Everyday Threat Intelligence
(YETI) platform solution, which also provides a similar threat intelligence platform. Refer to

https://yeti-platform.github.io/.

Apache Metron

Apache Metron is a cybersecurity application framework that can perform big data analysis to
identify anomalies. The framework provides the following key characteristics:

 The processing, enrichment, and labeling of the data source for security analysis,
search, and query.

 Anomaly detection using machine learning algorithms
 SIEM-like capabilities (alerting, threat intelligence framework, agents to ingest data

sources)
 A pluggable framework for various kinds of data sources and that can add parsers for

new data sources

Resources

1. Hands-On Security in DevOps by Tony Hsu

