
Advanced Penetration Testing,
Exploit Writing, AND Ethical
Hacking

Module1: Network Attack for
Penetration Tester

Tcp stack fingerprint->change with osfuscate

Mac address impersonation->macshift(windows),ifconfig,ip(linux)

Http snif->cain,etthercap,bettercap

Captive Portal access point->Fluxion

802.1x:

Authentication protocol,lan or wan

1-supplicant: the client device that wishes to connect to the LAN

2-authenticator: a network device such as a switch that provides access to the LAN

3-authentication server: a host that runs software that implement RADIUS or AAA protocol

Extensible Authentication Protocol(EAP):

Not protocol, message format

EAP-TLS->prevent MITM

EAP-MD5 Attack

 silentbridge

http://xtest.sourceforge.net/

MAC Filtering and MAC Authentication Bypass(MAB):

All device not support 802.1x the port security exceptions

Bridge-based bypass with silentbridge or …

VLAN Manipulation

1-Vlan hooping

https://github.com/nccgroup/vlan-hopping---frogger

https://github.com/commonexploits/vlan-hopping

https://github.com/tomac/yersinia

Solution:

 disable dtp
 prevent double tagging

2-Voice Vlan hooping

cdp->discovery protocol->packet interval->60s->vlan number,void vlan number

Voiphopper

Network Manipulation

1-MITM

LAN Manipulation

1-ARP Spoofing

Ettercap or bettercap

2-SMB Capture

Ettercap or bettercap

HSRP

https://github.com/s0lst1c3/silentbridge
http://xtest.sourceforge.net/
https://github.com/s0lst1c3/silentbridge
https://github.com/nccgroup/vlan-hopping---frogger
https://github.com/commonexploits/vlan-hopping
https://github.com/tomac/yersinia

Hot standby router protocol->ensure high-availability across multiple routers

Hsrp authentication->plaintext password->default password->cisco

Multicast hello messages include credential

Sending raw hsrp packet,active router,MITM with yarseina

https://github.com/tomac/yersinia

VRRP

Virtual Router Redundancy Protocol

Not include any authentication or integrity checks

MITM with Loki

https://github.com/Raizo62/Loki_on_Kali

Routing Protocols

 Discovering internal network
 Mapping internal infrastructure
 Wide-scale mitm opportunity

Ospf

Periodic multicast “hello” packets

Ospf enumeration with loki

Ospf md5 attack with loki

Also use cisco ios virtual machine

IPV6 for Penetration Testers

Ipv6 attacks can be local or remote

Arp protocol->ICMPv6 ND->spoofing or manipulation

Local ipv6 device enumeration

ping6 -I INTERFACE -c 5 ff02::1 > /dev/null, nmap -6 -sS -sC fc00:660:0:1::23

IPv6 replaces ARP with Neighbor Discovery(ND)

Remote IPv6 Discovery

Dig +short IN AAAA www.google.com

IPv6 Neighbor Impersonation MITM Attack

A->NS->all multicast nodes->identify B Mac address

https://github.com/tomac/yersinia
https://github.com/Raizo62/Loki_on_Kali

B->NA->A

C->own NA with B’s MAC Address->A with NA Override flag set

then

A->C->B

Sysctl -w net.ipv6.conf.all.forwarding=1

Parasite6 -IR INTERFACE

IPv6 Router MITM Attack

Node discover router with ICMPv6 router solicitation(RS)

Router respond with configuration detail with for all nodes

Attacker also claims to be a router, with a higher preference(RA Message)

IPv4 to IPv6 Proxy

https://github.com/dukaev/ipv4-ipv6-proxy

Section 2: Exploiting The Network

Network Exploitation

1-access to the network(check ability to manipulate clients with MITM - check)

2-techniques to exploits clients and infrastructure devices

Software Updates

1-retrieves the new update, executes the install automatically

2-sometimes update are performed over ssl(commonly updates are delivered over HTTP)

ISR Evilgrade->exploit weak software update

https://github.com/infobyte/evilgrade

Dns manipulation with ettercap+evilgrade

https://www.youtube.com/watch?v=n-WdGURSDiI

HTTPS

Mitm attack->manipulate http traffic->request to upstream https site with Ssltrp

https://github.com/moxie0/sslstrip

Ettercap or bettercap+ssltrip

SNMP

https://github.com/dukaev/ipv4-ipv6-proxy
https://github.com/infobyte/evilgrade
https://www.youtube.com/watch?v=n-WdGURSDiI
https://github.com/moxie0/sslstrip

Snmp framework we typically have four components

1-managed device->remote device able to read or write snmp variables

2-agent->snmp service running on managed device

3-nms(network management system)->management console->collect or set snmp data on

managed device and interact with agent

4-mib(management information basic)->data reported by the snmp agent

SNMP Eavesdropping: Ettercap

As MITM, ettercap will log all snmp community string observed

Ettercap -Tqm arp:remote // //

SNMP Agent Discovery

Snmp version scan->Nmap -sU -p161 -A IP

Enumerate multiple dns server->Fierce.pl -dns ri.cox.net

Snmp community string scanner:

1-genip 10.10.10.1-254 >hosts.txt

2-onesixtyone -c snmp.txt -i hosts.txt

Metasploit snmp scanner:

Use auxiliary/scanner/snmp/snmp_login

Set rhost 10.10.10.1-254

Set verbose false

Set threads 4

Exploit

Enumerate device(hostname, local user account, local routing table information, installed

software, …)->snmpcheck -t 10.10.10.10 -c NotSoPublicCommunityString

Router/Switch SNMP Control

Snmp rw access to routers and switches

Change MIB variable:

Snmpwalk -v2c -c public 10.10.10.0 system.sysLocation.0

Snmpset -v2c -c public 10.10.10.10 system.sysLocation.0 s “Foo”

http://www.net-snmp.org/

http://www.net-snmp.org/

Also use cain and snmpblow.pl

Module2: Crypto, Network
Booting Attacks, and Escaping
Restricted Environments

Section1: Crypto for Pentester

Stream Ciphers

 Encrypt one bit at a time
 Encrypt length in the same as plain text(63 byte ciphertext==63 byte plaintext)
 Cipher generates a keystream
 Keystream is xor’d with plaintext to produce ciphertext

IV Considerations

We accomplish by mixing a per-packet value with each key(Initialization vector(IV))

Block CIpher

Encrypt data a block at a time

Must pad the last few bytes to an even block length(8 byte block length with 64 bytes ciphertext
is 57-64 bytes plaintext)

Example: AES, DES, 3DES, Blowfish

Block Cipher Mode

Any block cipher can used with various modes(AES-CTR,3DES-CBC)

1-ECB

Before encrypt

after encrypt

https://www.willhackforsushi.com/code/ecb_encrypt_image.zip

2-CBC

3-CTR

https://www.willhackforsushi.com/code/ecb_encrypt_image.zip

Identifying the Algorithm

Encrypt data size divisible by 8->stream cipher, often RC4

Encrypt data size always divisible by 16->AES(128-bit block size)

Encrypt data size always divisible by 8->DES, 3DES

https://github.com/Wind-River/crypto-detector

https://github.com/ashutosh1206/Crypton

Hash Identification

Hash use a input for processing or storage

 Password storage
 Http parameter
 Message integrity checks

https://github.com/blackploit/hash-identifier

Extract the payload data for TCP and UDP packets

1-visualize byte distribution

Pcaphistogram->pcaphistogram.pl capture2.dump | gnuplot

2-extract data with tpick, evaluate with ent

Tpick -r sample.dump -wR

Ent *.dat

3-extract data with custom scapy code, evaluate with ent

Scapy and ent

https://github.com/Wind-River/crypto-detector
https://github.com/ashutosh1206/Crypton
https://github.com/blackploit/hash-identifier

CBC Bit Flipping Attacks

Change IV

https://github.com/GrosQuildu/CryptoAttacks

Oracle Padding Attacks

Padding: Require for block ciphers, different methods are used.

https://github.com/GrosQuildu/CryptoAttacks

https://github.com/AonCyberLabs/PadBuster

https://github.com/KishanBagaria/padding-oracle-attacker

https://github.com/liamg/pax

Hash Length Extension Attack

https://github.com/AonCyberLabs/PadBuster
https://github.com/KishanBagaria/padding-oracle-attacker
https://github.com/liamg/pax

https://github.com/stephenbradshaw/hlextend

https://github.com/bwall/HashPump

https://github.com/iagox86/hash_extender

Section 2: Attacking with Network Booting

Pre-boot Environment

Includes any special enterprise keyboard/video/mouse control devices.

IPMI: Intelligent Platform Management Interface

 auxiliary/scanner/ipmi/ipmi_version

https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/

DHCP

Dhcp does not support authentication

Mitm:

Ettercap -TqM dhcp:10.10.9.9-100/255.255.0.0/8.8.8.8

PXE: Portable Execution Environment

Provide a bootable image to the client as a DHCP extension after IP address assignment.

https://www.rapid7.com/db/modules/auxiliary/server/pxeexploit

https://github.com/stephenbradshaw/hlextend
https://github.com/bwall/HashPump
https://github.com/iagox86/hash_extender
https://blog.rapid7.com/2013/07/02/a-penetration-testers-guide-to-ipmi/
https://www.rapid7.com/db/modules/auxiliary/server/pxeexploit

bootp(bootstrap protocol): client asks its ip by sending UDP,server broadcast the reply

Amended for vendor options: tftp, dhcp over bootp

Use wireshark filtering for “bootp or tftp”

PXE Attacks

1-pxe server as boot image(konboot,kali)

2-attacker needs a small infrastructure(presence along the dhcp request, malicious dhcp server,
malicious tftp server)

https://github.com/secdev/scapy/wiki/Contrib:-Code:-DhcpTakeover

msf->pxexploit

Kon-boot

https://blog.netspi.com/attacks-against-windows-pxe-boot-images/

Hypervisor + VT-d + Storage Appliance

http://sanbarrow.com/vmdk-basics.html

Section 3: Escaping Restricted Environments

Type of restricted environments:

 *nix chroot/jail
 *nix SELinux/AppArmor
 VME(Component Virtualization)
 Windows Software Restriction Policies(SRPs)

Gols:

 escalate(become admin/root)
 escape(subvert the restrictions)

Chroot

Hide the rest of the filesystem from an application

 Is not virtualization
 Is not a security control
 Is not a jail

Chroot’ed process can still see other process

Chroot’ed process can start a new process

For example:

1-inside

https://github.com/secdev/scapy/wiki/Contrib:-Code:-DhcpTakeover
https://blog.netspi.com/attacks-against-windows-pxe-boot-images/
http://sanbarrow.com/vmdk-basics.html

Chrome /root/prison/

Nc -nvlp 99

2-from outside the jail

Ps auwx | grep nvlp

Ls -l /proc/ID | grep prison

Manipulate chroot to escape:

1-linux syscall 61(C Code, pointer to path in EBX)

2-see /proc

3-simply chdir & chroot to escape

Jail

With jails, effectively everything is virtualized and isolated except the kernel.

Jail lock a process

 To a file path
 Including forks

Configuration or administration mistake, like overlapping directory structure or moving a jailed
process’s working directory out from under it, could be used to escape

https://filippo.io/escaping-a-chroot-jail-slash-1/

https://www.hackingarticles.in/multiple-methods-to-bypass-restricted-shell/

Solaris Zones and Containers

Extend chroot+jail

Can have copies of the same of different kernels

Grsecurity and PAX

Grsecurity: protect linux kernel

Pax: gcc protection

 Patches to linux kernel and gcc
 Restricts and protects exploitation of common bugs
 Role Based Access Control(RBAC)

Application Restrictions

 Selinux/apparmor/applocker

https://filippo.io/escaping-a-chroot-jail-slash-1/
https://www.hackingarticles.in/multiple-methods-to-bypass-restricted-shell/

Selinux limits by inode

Apparmor by filepath

Shell Restrictions

 Can be used to skrit other limits

 Only obsecure as a limitation
 Shell specific in $HOME

Virtual Machine Environment

 Network architecture often virtualize assuming it protects
 Often increase exposure to unsupported hosts

General Methodology to Escalate

1. Gain privilege by exploiting services
2. Environment variable
3. Trojan executable or libraries
4. Configuration or other input files
5. Meterpreter post modules: post/windows/escalate
6. New metasploit local exploit: exploit/[OS]/local/*
7. Depends heavily on what is installed
8. Look to obsecure input

Example command to Escalate

0-find the environment and home

Ls -la

Echo *

1-Find any writable files:

Find / -type f -perm -o+w

2-Find any configuration file:

Find / -type f -name “*conf” -o -name “*cfg”

3-Find inventory of tools:

Find / -type f -perm -o+rx

4-find SUID/SGID programs

Find / -perm -2000 -o -perm -4000

Sudo -l

5-find insecure file usage

Ltrace /usr/sinb/adminapp

Manipulating Library Loading on Linux

1-check for libraries to abuse

Ldd /usr/bin/potential-escalator

2-ELF’s RPATH/RUNPATH Hardcoded Libs Path

3-find libraries to control program

Env | grep ‘LD_\|RTL_’

Manipulating Library Loading on Windows

1-Find dll for vulnrable exe

Tasklist /fi “imagename eq notepad.exe” /m

Breaking Out as UID0

Chdir + chroot + traversal

Breaking Jail

 Kernel vulnerabilities
 Links or local privilege escalation

VME Attack Surface

1-Attack hypervisor directly

 custom exploitation
 what input
 what we can control

2-Attack the implementation

 weak password
 bad configuration

3-Management network

 MITM management traffic
 Password guess

4-VM Network

 Escalate or pivot to another guest
 Weakest guest to attack first
 If any vm require promiscuous mode, vswitch allows for all

5-storage network

 MITM NFS(TCP)
 MITM iSCSI MS-CHAP Authentication

Looking for Exploitable Features or Flaws

1-find usability information on custom apps

Man custom_app

Find /usr/share -name custom_app

Find /usr/local/share -name custom_app

2-try different usage arguments

/usr/bin/custom_app -h

/usr/bin/custom_app --help

/usr/bin/custom_app --DOESNTEXIST

3-break custom application with bad input

/usr/bin/custom_app 12

/usr/bin/custom_app AA

/usr/bin/custom_app A B C D E F …

4-error messages can lead to exploitability

5-tracing library calls will show lower-level security

Ltrace /usr/bin/custom_app 10.10.10.10

6-check for blessed authorization

Sudo -l

7-privileged editors that can execute

vi/vim :!/bin/bash or :shell

Ed ed !/bin/bash

Nano Ctrl+W

8-privileged commands with arguments

Custombackup `/bin/bash`

Export $IFS=”:”; custombackup file:`id`

Other Tools to Help Escalate

1-penetestermonkey’s exploit-suggester

2-PenturaLab’s Linux_exploit_suggester

3-Pentestmonkey’s unix-privesc-check

4-Tobias Klein’s checksec.sh

5-LinEnum

6-Enum4linux

Section 4: Windows Restricted Desktops

Restricted Desktops

Type of restrictions

1-physical security controls

 BIOS
 Boot
 Encrypted disks
 HW disabling

2-network and internet controls

 Web filtering, host-level firewalls/HIDS/HIPS

3-windows controls

 Group Policy Objects(GPO)

 Application Black/Whitelisting(applocker)
 Third-party software replacing explorer.exe

Third-party software: RES PowerFuse, Secure Desktop, SiteKiosk

Software Restriction Policies

Policy rule are based on:

 Certificate: software publisher certificate used to digitally sign the file
 Hash: a cryptographic fingerprint of the file
 Zone: from which IE zone the file was downloaded
 Path: path where the file is stored

Unrestricted: if the application falls into the scope of the rule, execution is allowed

Disallowed: if the application falls into the scope of the rule, execution in not allowed

Escaping Restricted Desktops

 Breaking out of authorized applications
 Transferring files and tools
 Executing custom code

1-work with most windows accessories and games

2-GPO hides files/directories

3-third-party application as a file transfer tools(notepad,ms paint,..)

4-nslookup as a file transfer tool

5-using debug.exe to re-create an exe/dll

6-ikat toolkit

7-using runas

Exploits:

1-browser exploits(/server/browser_autopwn auniliary)

2-using runas

3-file-format exploits(/server/file_autopwn auniliary)

4-Using a Dynamic Link Library(msfvenom+msfpayload,...)

5-Microsoft office macros

6-using the windows api

7-powershell

Module 3: Python, Scapy, and
Fuzzing

Section1 : Product Security

Product security testing

 Network Access Control(NAC)

 Intrusion Prevention System(IPS)
 Antivirus(AV)
 Voice over IP(VoIP)
 Smartphone
 Countless others

Initial Questions

 Type of product
 Size of deployment
 Location of deployment
 Data element stored
 User access level
 Business driver

Testing Environment

 VMware and images of company OS build
 hardware(laptops, switch, cables)
 Disassemblers and debuggers
 Fuzzing tools(sulley, packetfu, custom)
 Scripting language(python, ruby)
 sniffers(wireshark, tcpdump)

Vulnerability DIscovery

 Corporate disclosure policy
 Appropriate contacts
 Severity and impact
 Remediation efforts

Types of Disclosure

 Full disclosure: detail made public, possibly with a exploit
 Limited disclosure: existence of problem publicized
 Responsible disclosure: analyst works with vendor to disclose after resolution

Section2 : Python for Pentester

1-basic types

2-string slicing

3-string concatenation

4-lists

5-control(if/elif/else,for)

6-useful python built-in’s(func)

7-exceptions

8-modules(sys, os)

9-introspection(dir, help, type, globals)

10-useful snippets(https://github.com/jmortega/python-pentesting)

11-python 2 to python3(2to3)

Leveraging Scapy

1-scapy packet layering

https://github.com/jmortega/python-pentesting

2-scapy protocol support

https://scapy.readthedocs.io/en/latest/

3-useful script

 Intercepting packets with scapy
 Packet capture interaction
 Sniffer channel over wireless
 Ipv6 router discovery

Section3: Fuzzing Introduction and Operation

What is fuzzing

1. Testing mechanism that send malformed data to a well-behaving protocol
implementation

2. Research technique that has shows great success in identifying vulnerabilities
3. Essential part of a software development lifecycle for secure products

Fuzzing requirements

1. Documentation: a source of information about the target being evaluated
2. Target: one or more targets to evaluate
3. Tools: fuzzing tools or programmatic harness to leverage to building tools
4. Monitoring: method to identify when a fault is reached on the target
5. Time, patience, creativity

Techniques - Static Test Cases

 During information collection, analyst identifies individual tests
 Test case stored as a file that can be sent to target, often binary file
 Lots of up-front development time

https://scapy.readthedocs.io/en/latest/

 Limited by creativity of analyst
 Easy to reproduce tests across systems

Techniques - Randomized

 Start with a valid frame
 Selected portions replaced with randomized data
 Infinite run-time process, limited code coverage due to random nature of data

Techniques - Mutation

 No protocol analysis, just a sample data for mutation
 Mutates one byte/short/long at a time through entire data

Tools: taof

Techniques - Intelligent Mutation

 Describes a protocol and tests permutations
 Lots of up-front time analyzing protocol
 Often consists of a protocol “grammar” and describing the operation and framing

Vulnerability:

 Directory traversal(../../../../../../../../../etc/passwd)
 Command injection(system())

Read more: http://fuzzing.org/

Section4: Building a Grammar with Sulley

Sulley as a fuzzing framework

https://github.com/OpenRCE/sulley

https://github.com/jtpereyda/boofuzz

1-http get request initialization

2-http get request immutable values

3-http get request delimiters

4-http get request strings

5-http get request numbers

6-http get request finishing up the grammar

7-http get request counting mutations

8-http get request estimating runtime

9-http get request displaying mutations

http://fuzzing.org/
https://github.com/OpenRCE/sulley
https://github.com/jtpereyda/boofuzz

Session Agent

Netmon: capture libpcap files for each mutation

Procmon: monitor process for faults, restarting as needed

Vmcontrol: start, stop, and reset guest; take, delete and restore snapshots

Post-Mortem Analysis

Pcap_cleaner: remove all files without crash data(even non-pcap!)

Crashbin_explorer: navigate, examine and graph crash data

Section5: Fuzzing Block Coverage Measurement

Block Coverage

 Wxpython+mysql+ida pro+ida python plugin+uDRAW+paimei
 pstalker

NEED MORE INFORMATION!!!

Module4: Exploiting Linux for
Penetration Testers

Section1: Introduction Memory

Physical Memory

Process registers:

 Hard coded variables
 Fastest

Process cache:

 Data cache - L1 & L2 cache
 Instruction cache & tlb’s
 Pre-fetches data from ram

Random Access Memory(RAM): volatile memory the loses the information it holds when its host
is powered off

Processor Register

1-General purpose registers - 32bit

 EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

2- General purpose registers - 64bit

 RAX, RBX, RCX, RDX, RSI, RDI, RBP, RSP + R8-R15

3-Segment Register

 CS, DS, SS, ES, FS, GS
 Often used to reference memory locations

4-Flags register - Mathematical Operations

 Zero flag, Negative flag, Carry flag, etc.

5-Instruction Pointer(IP)

6-Control registers

 CR0 - CR4
 CR3 holds the start address of the page directory

General Purpose Registers

 EAX/RAX - Accumulator Register - “imul eax,4”
Designed to work as a calculator

 EDX/RDX - Data Register - “add eax, edx”
Works with eax on calculations
Pointer to input/output points

 ECX/RCX - Count register - “mov ecx, 10”
Used often with loops

 EBX/RBX - Base register - “inc ebc”
General purpose register

 The lower 16-bits of the 32-bits general purpose registers
 ESI/RSI - Source index

Pointer to read location during string operations and loops
 EDI/RDI - destination index

Pointer to write locations during string operations and loops
 ESP/RSP - stack pointer - “movl %esp,%ebp”

Holds the address of the top of the stack
 EBP - base pointer - RBP is used for general purpose

Serves as an anchor point for the stack frame

Segment Registers

 Segment register functionality and types
* nix vs. windows usage

 Segment selector and descriptor
 Global and local descriptor tables
 CS - Code segment
 SS - Stack segment
 DS - Data segment
 ES - extra segment
 FS - extra data segment
 GS - extra data segment

Memory models

 Real mode

64-bit systems still start in this mode
 Protected mode

Support for virtual memory up to 4gb and beyond
 Long mode for x64 systems

Virtual Memory

1. Physical memory
Physical address extension(pae) can support up to 64gb

2. Virtual / Linear addressing
Supports 4gbs of virtual address space on a 32-bit system

Paging

 Process of allowing indirect memory mapping

 Linear addressing is mapped into fixed-sized pages
Most commonly 4kb

 Page file may not be needed or used on 64-bit systems
 Context switching and the process control block(PCB)

Register values for each process are stored in the pcb and loaded during context
switching

Paging vs. Swap

 Non-recently access pages are copied over to disk
 Page faults
 Swapping an entire process
 Windows memory optimization

Object Files

1. Code segment

Fixed size segment containing code
2. Data segment

Fixed size segment containing initialized variables
3. BSS segment

Fixed size segment containing uninitialized variables
4. Heap

Segment for dynamic and/or large memory requests
5. Stack segment

Procedure stack for the process

Calling Conventions

 Define how functions receive & return data
Parameters are placed in registers or on the stack
Define the order of how this data in placed
Includes adjusting the stack pointer during or after function epilog to advance over
arguments

 Most common calling conventions
Cdecl - caller places parameters to called function from right to left and the caller tears
down the stack

 Stdcall - parameters placed by caller from right to left, and the called function
responsible for testing down the stack

Tools: GNU Debugger(GDB)

Section2: GDB & Syntax

Gdb Useful commands

 Disass <function>
 Break < function>
 Print $eip
 x/<number>i<mem address>
 Info
 C or continue - continues execution after a breakpoint
 Si - step one instruction

 Backtrace or bt
 Set disassembly-flavor <intel or att>
 Info breakpoints & delete breakpoints
 Run

X86 assembly language

 Low-level programming language
 Optimized for processor manipulation
 Ideal for:

Device drivers
Video games requiring hardware access
Allows faster access to hardware
Where speed is critical

AT&T vs. Inter syntax

Section3: Linkers & Loaders

 Linkers vs. loaders
Linker link a function name to its actual location
Loaders load a program from storage to memory

 Symbol resolution
Resolving the function’s address during runtime

 Relocation
Address conflict may require relocation

 Name mangling(not to be confused with overloading)

ELF

 Executable and linking format
 Executable & relocatable files

Can be mapped directly into memory at runtime
Allows for relative addressing to remain while changing the load address

 Shared objects
Used primarily to house shared function

 Procedure linkage table(PLT)
Read-only table produced at compile-time which holds all necessary symbols needing
resolution
Resolution performed when a request is made for the function(lazy linking)

 Global offset table(GOT)
Writable memory segment to store pointers
Update by the dynamic linker during symbol resolution

Tool: objdump

Objdump

 Objdump -d
Disassemble an object file

 Objdump -h
Displays section headers

 Objdump -j <section name>
Allow you to specify section
Objdump -j .text -d ./<prog_name>

Tool: readelf

Readelf

 Tool to display ELF object file information
 Display information on ELF headers and sections; i.e. GOT, PLT, Location information

ELF Demonstration

1-main func
Disas main

2-show on the second image
Objdump -d -j .text memtest | grep puts

3-show on the slide image

objdump -R memtest

4-view all section

Readelf -t memtest

5-within the .got.plt section

Readelf -x 22 memtest

Section4: Dynamic Linux Memory

Memory - The Heap

What is a heap?

 Dynamic memory allocated at program runtime
Memory allocating functions are used to request resources

 Allocation time is not finite
 Memory is freed by

Program code
Garbage collector
Program termination

Malloc Implementation

Heap manager used by the program

Interface to sbrk() and mmap()

malloc() - allocates a chunk of memory

realloc() - decreases or increases amount of space allocated

free() - frees the previously allocated chunk

calloc() - initialized data as all 0’s

Dlmalloc

Used by many linux variants as the primary memory allocator

Includes malloc(),realloc(),free() and some utility routines

unlink() & frontlink()

The unlink() function removes chunks from a doubly-linked list

The fontlink() function inserts new chunk into a doubly-linked list

unlink() is called by free() when an adjacent chunk is also unused

Unlink & Coalescing Process

Ptmalloc: based on dlmalloc

Tcmalloc: thread-caching malloc

Jemalloc: jason evan’s malloc

Tool: ltrace

Section5: Introduction to Shellcode

Shellcode - code to spawn a shell

Injected into a program during exploitation and serves as the “payload”

System Calls

 Force the program to call functions on your behalf
 Communicate between user mode and kernel mode(ring 0)
 Arguments are loaded into processor registers and an interrupt is made. On 32-bit x86

EAX holds the desired system call number
EBX, ECX and EDX hold arguments usually in alphabetical order

 Each system call must be well-understood prior to writing the assembly code

Common system calls

http://man7.org/linux/man-pages/man2/syscalls.2.html

Creating Shellcode

We need to restore rights

 setreuid() -> system calls

http://shell-storm.org/shellcode/

Tool: The Netwide Assembler(NASM)

Remove null bytes:

 Xor eax, eax

http://man7.org/linux/man-pages/man2/syscalls.2.html
http://shell-storm.org/shellcode/

 Sub eax, eax
 Mov eax, eax
 Inc eax / dec eax

Section6: Smashing the Stack

Stack Exploitation on Linux

Goals of stack overflows:

 Privilege escalation
 Getting shell
 Bypass authentication
 Overwrite
 Much more…

Steps:

1. Finding privileged programs
2. Trigger a segmentation fault
3. Determine the size of the buffer
4. Redirection execution to granted

https://medium.com/@maximilianomeyer1/hack-the-box-pwn-little-tommy-429edd9cb105

Stripped Programs

The strip tool removes symbol tables

Some popular return-to-xxx methods:

 Ret2strcpy & ret2gets
Potentially overwrite data at any location

 Ret2sys
The system() function executes the parameter passwd with /bin/sh

 Ret2plt
Return to a function loaded by the program

Many functions take in arguments that you can place on the stack

Return Oriented Programming

 Rop is the successor to return-to-libc style attack
 Rop can be multi-staged or turning-complete

Injection of code may or may not be required
Jump Oriented Programming(JOP) technique can perform a similar goal through a
gadget dispatcher to avoid stack dependency and ESP advancement

Gadget

Are simply sequence of code residing in executable memory, usually followed by a return
instruction

https://medium.com/@maximilianomeyer1/hack-the-box-pwn-little-tommy-429edd9cb105

Rope without Returns

Using pop instructions and jmp *(reg)’s can achieve the same goal as return

Section7: Advanced Stack Smashing

Linux stack protection

 4-byte value placed on the stack
 Protect the return pointer(RP), saved frame pointer(SFP) and other stack variables

Canaries and Security Cookies

Linux uses the term canaries and windows uses security cookies

Common type of stack protection:

1-stack smashing protector
Formerly known as prepolice

Integrated with gcc on many platform

Support different type of canaries

2-stackguard

Integrated with older version of gcc

Uses a terminator canary

Type of canaries

Defeating stack protection

 Bypassing a terminator canary on ubuntu
 Normally seems to default to \x00000aff
 Some programs have custom canaries
 Overwriting SFP
 Multiple writes with strcpy() or gets()

Real life example: ProFTPD 1.3.0(stack overflow discovered, terminator canary is repaired, aslr
is defeated, local and remote exploit version released)

Linux Address Space Layout Randomization(ASLR)

 Stack and heap addressing is randomized
 mmap() is randomized
 Most significant bits are not randomized
 PaX patch will increase randomization

Enable aslr(full randomization): echo 2 > /proc/sys/kernel/randomize_va_space

Enable aslr(conservative randomization): echo 1 > /proc/sys/kernel/randomize_va_space

Disable aslr: echo 0 > /proc/sys/kernel/randomize_va_space

Defeating ASLR

 Data leakage
Format string bugs

 Locating static values
Not everything is always randomized
Procedure linkage table(PLT)

 Providing more bits to the randomization pool increases security

Tool:ldd

Linux-gate.so.1

 Virtual dynamically-linked shared object(VDSO)

 Consistently loaded at 0xffffe000
 Used for virtual system calls

A gateway between user mode and kernel mode
Work with SYSENTER & SYSEXIT
Faster method than invoking int 0x80

Other Opcodes of Interest

 Ret-to-ESP
jmp/call esp - 0xffd4 or 0xffe4

 Ret-toEAX
Useful when a pointer is returned via eax to the calling function
jmp/call eax - oxffe0 or 0xffd0

 Ret-to-Ret
Return repeatedly down the stack until you control the location
Ret instruction - 0xc7***2.6.20 has these in linux-gate.so.1

 Ret-to-Ptr
During some sef-fault, registers hold addresses on the stack we can control; e.g.
0x41414141 may show up in a register
Ret-to-Ptr in eax, edx, edi, esi, etc.

Checking For BoF

Checking with GDB

No Where to Return

 The stack randomized with each run of the program
 System libraries and functions are randomized with each run
 20-bits is used for randomization
 Brute-force not a good solution

Wrapping the Target Program

 Exec family function(execl(), execlp(), execle(), execv(), execvp())
 Replace the current process image with a new process image

Module5: Exploiting Windows
for Penetration Testers

Section1: Introduction to Windows Exploitation

Windows has two access mode:

 Kernel mode: core operating system components, drivers
 User mode: application code, drivers

Kernel memory is shared between processes

32-bit windows provides 2gb of virtual memory to the kernel and 2gb to the user

64-bit windows provides 7tb or 8tb to the kernel and 7tb or 8tb to the user

Windows vs. Linux

 Linking and loading
Elf vs. pe/coff
got/plt vs. iat/eat

 Windows api
Windows application programming interface

 Structured exception handling - seh
Global exception handler
Try and except/catch blocks

 Threading
fork() vs. threads

Linking & Loading - PE/COFF

 Windows object file format
 Two primary formats(executable format, dynamic link libraries(dll))
 Import address table
 Export address table
 .reloc section

pe/coff primary section

 Dos executable file
Mz header - “4d 5a”

 Signature
Pe signature - pe\0\0

 Header
0x014c - intel 386 requirement

 Optional header
0x010b - pe32 format | 0x020b - pe64 format
Image size
Rva offset
Stack and heap requirements

 Section table
Ascii section names(.text, .idata, .rsrc, etc)
Memory location of section
4096 byte boundary alignment

 Lazy linking
Similar to plt and got relationship
Symbols are not resolved until first call

Tool: ollydbg, immunity debugger, pedump

Ollydbg

 Binary analysis
 Register contents, procedures, api calls, patching and more

Immunity debugger

 Free debugger based of of ollydbg
 Extensive development work focused on reverse engineering and exploit development

 Support python scripting
 Combines command-line and gui

PEDUMP

 Pe file examination
 Display pe header
 Display section tables
 Display symbol tables

The Windows API

 Set of compiled functions and services provided to windows application developers
 Provides services such as network services, registry access, command-line services
 You must ask the os to perform most routines

Thread Information Block(TIB)/Thread Environment Block(TEB)

 Store information about current thread
FS:[0X00] pointer to seh chain
FS:[0X30] address of peb
FS:[0X18] address of tib

 Takes away the requirement to make an api call to get structural data
 Each thread has a tib

Process Environment Block(PEB)

 Structure of data with process specific information
Image base address
Heap address
Imported modules
Kernel32.dll is always loaded
Ntdll.dll is always loaded

 Overwriting the pointer to
RL_CRITICAL_SECTION is a common attack
The peb is located at 0x7ffdf000 *randomization*
0x7ffdf020 holds the fastpeblock pointer
0x7ffdf024 holds the fastpebunblock pointer

Structured Exception Handling(SEH)

 Callback function
Allow the programmer to define what happens in the event of an exception such as print
a message and exit of fix issue

 Chain of exception handlers
FS:[0x00] points to the start of the SEH chain
List of structures is walked until finding one to handle the exception
Once one is found, the list is unwound and the exception registration structure at
FS:[0x0] points only to the callback handler

 UnhandledExceptionFilter is called if no other handlers handle the exception

WOW64

Windows 32-bit on windows 64bit

Set of user-mod dlls to handle calls to and from 32-bit processes

Section2: Windows OS Protections and Compiler-Time Control

Exploit mitigation Controls

1-Application Opt-In controls

Exploit mitigation control supported by the os

Include ASLR participation, DEP participation and

2-OS-Controls

Compile program to participate in a control

Include ASLR, hardware DEP, and several others.

3-Compile-Time Controls

Controls that are added in during compile-time

Include canaries or security cookie, application ASLR, SafeSEH, and

Linux Write XOR Execute

Marks areas in the memory as writable or executable

 Code segment are executable
 Data segments are writable
 Cannot be both

No execute (NX) bit - AMD

eXecute disable (XD) bit - Intel

Data Execution Prevention

 Marks pages as non-executable(e.g. stack, heap, raises an exception if execution is
attempted)

 Hardware based by setting the execute disable(XD) bit on intel
Amd uses the no execute (NX) bit

 Can be manually disabled in system properties
 Software dep is supported even if hardware dep is not supported

Software dep only prevents seh attacks with safeseh

SafeSEH

 Build a table of trusted exception handlers during compile-time
 Will not pass control to an address that is not in the table
 Third-party programs & dlls may cause a problem

Structured Exception Handling Overflow Protection(SEHOP)

 Adds a validation frame at the bottom of the stack

 Prior to an exception handler being called, the SEH chain is walked to verify that the
validation frame is at the end

 Defeating this control would require one to create a fake validation frame in the attack
which points to ntdll!FinalExceptionHandler

PEB Randomization(PEB Discussed Shortly)

 The PEB has 16 possible locations

0X7FFD0000,0X7FFD1000,......,0X7FFDF000
 Randomization runs separately from Address Space Layout Randomization(ASLR) on

later version

Heap Cookies

 8-bits in length (256 possible values)
 Can be guessed 1/256 tries on average
 Placed directly after the “Previous Chunk Size” field

Safe Unlinking

 Similar to the update to early GLIBC unlink() usage on linux; e.g. dlmalloc

 Much better protection than 8-bit cookies
 Combined with cookies and PEB randomization, exploitation is difficult

Low Fragmentation Heap(LFH)

 32bit cookie
 Allocate blocks in predetermined size ranges by putting block into blocks

128 buckets total

Enhanced Mitigation Experience Toolkit(EMET)

 Adds additional or more strict exploit mitigation controls to the windows os
 Introduces controls such as “Mandatory ASLR”

Windows Kernel Hardening

 First 64kb of memory cannot be mapped, so no more null pointer dereferencing
 Guard pages added to the kernel pool
 Improved aslr
 Kernel pool cookie
 C++ vtable protection or ie
 ROP/JOP protection
 ForceASLR, sehop, more aggressive cookies

Section3: Windows Overflows

mona.py

Pycommand for immunity debugger

Helpful for

 Rop gadget
 Exploit mitigation control scanning(DEP, ASLR, SafeSEH, etc)
 Easily search for trampolines and code reuse

Useful commands

 Update: !mona update
 Search for trampolines and other code reuse blocks: !mona jmp -r esp -m

<module_name>
 Search for seh overwrite code sequences: !mona seh -m <module_name>
 Set up the working folder to where output is written: !mona config -set working_folder

<PATH/%p>
 Display loaded modules and protections: !mona modules
 Generate a pattern to determine buffer size: !mona pattern_create <N>
 Pattern locator: !mona pattern_offset <pattern>
 Find rop gadget: !mona rop

Finding a “jmp esp” or “call esp”:

Select one of the dll’s not participating in aslr or rebase, like Configuration.dll, and run the
following command: !mona jmp -r esp -m Configuration.dll

Functions that can disable DEP

 VirtualAlloc() - create new memory region, copy shellcode and execute

 HeapCreate() - same as above, but requires more api chaining
 SetProcessDEPPolicy() - change the dep policy for whole process
 NtSetInformationProcess() - changes the dep policy for process
 VirtualProtect() - change access protection of the memory page where you shellcode

resides
 WriteProcessMemory() - write shellcode to a writable and executable location and

execute

VirtualProtect() Method

 Rop requires familiarity with the desired function and practice fixing broken chains
 Rop can be used to set up the arguments to VirtualProtect() on the stack or in registers

Stack Pivoting

 Method to move the position of esp from the stack to an area such as the heap
xchg/mov esp, eax
Ret
Register such as eax pointing to rop code on the heap, so we pivot esp to take
advantage of pop’s and push’s

 Works hand-in-hand with ROP and JOP
Not always necessary with stack overflows
If doing seh overwrite, you may not have enough space below on the stack to hold all of
your code
You can use gadget that subtracts a number of bytes from the stack pointer to get to a
location where you have more space

Section 5: Tools to help build gadgets

 Mona.py - an immunity debugger PyCommand
 White phosphorus - Immunity Canvas commercial exploit pack
 Ropeme - linux gadget builder
 Metasploit RopDB - more flexible ROP chains

Section 6: Building a Metasploit Module

Metasploit Template

Sample file: sample.rb

/framework3/documentation/samples/modules/exploits/sample.rb

/opt/metasploit/msf3/documentation/samples/modules/exploits/sample.rb

https://github.com/lattera/metasploit/blob/master/documentation/samples/modules/exploits/sam
ple.rb

Section 7: Windows Shellcode

Shellcode on Windows

 Still commonly used to spawn shells

https://github.com/lattera/metasploit/blob/master/documentation/samples/modules/exploits/sample.rb
https://github.com/lattera/metasploit/blob/master/documentation/samples/modules/exploits/sample.rb

 Can do much more, such as adding user accounts, dll injection, viewing files,
meterpreter, etc.

Shellcode is specific to processor type

 X86, arm, powerpc, etc. assembled code

Location of libraries and functions can be tricky on windows

 System calls on linux are consistent, but not on windows
 Changes between oss and service packs can cause problems

Sockets not directly available through system calls

 You must go through an api to load the library and call the appropriate function

Accessing kernel resources

Dlls are loaded into running processes

 We are forced to use the windows api to make system calls
 Kernel32.dll, kernelbase.dll, and ntdll.dll are always loaded, but we must first locate them
 We must also determine a way to wald through the loaded modules eat to find a desired

function

Locating kernel32.dll

 Load additional modules with LoadLibraryA() and GetProcAddress()
LoadLibraryA() allows us to load libraries(return a handle to the base address)
GetProcAddress() allows us to get the functions address inside the Dll(base address of
the dll holding the function is passed as an argument, as well as the desired function
name)

 Process Environment Block(PEB)
The peb holds a list of loaded modules

 SEH unhandled exception handler points to a function within kernel32.dll
 Checkout “Win32 Assembly Components” by the last stage of delerium

Locating GetProcAddress()

 GetProcAddress()’s RVA changes often between os releases and service packs
 We can find this by walking the export address table
 You can walk the table and compare the desired function to the list

Loading Modules and APIs

 Any module can be loaded into the processes address space with LoadLibraryA()
 Specific APIs/Function can be resolved with GetProcAddress()
 You have a portable method to locate the addresses and are not bound to one os or

service pack

Multi-stage Shellcode

For when there’s not enough space to fit all of your shellcode

1. Execute a first-stage loader
Allocate memory with VirtualAlloc(), read additional shellcode coming over the
connection, and execute

2. Open sockets can be walked with getpeername() in ws2_32.dll
Locate the file descriptor
Redirect cmd.exe to the existing file descriptor/socket

3. Egg hunting shellcode is a technique to use when you can get additional shellcode to
execute loaded somewhere in memory, prepended with a tag

Resources

 SANS Sec660
 SANS Sec760
 CTF
 HackTheBox

